Kalkulus Contoh

Evaluasi Integralnya integral dari (5x^3+3x^2+x)/(x^2) terhadap x
Langkah 1
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Faktorkan dari .
Langkah 1.1.2
Faktorkan dari .
Langkah 1.1.3
Naikkan menjadi pangkat .
Langkah 1.1.4
Faktorkan dari .
Langkah 1.1.5
Faktorkan dari .
Langkah 1.1.6
Faktorkan dari .
Langkah 1.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Faktorkan dari .
Langkah 1.2.2
Batalkan faktor persekutuan.
Langkah 1.2.3
Tulis kembali pernyataannya.
Langkah 2
Bagilah dengan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
+++
Langkah 2.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
+++
Langkah 2.3
Kalikan suku hasil bagi baru dengan pembagi.
+++
++
Langkah 2.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
+++
--
Langkah 2.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
+++
--
+
Langkah 2.6
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
+++
--
++
Langkah 2.7
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
+
+++
--
++
Langkah 2.8
Kalikan suku hasil bagi baru dengan pembagi.
+
+++
--
++
++
Langkah 2.9
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
+
+++
--
++
--
Langkah 2.10
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
+
+++
--
++
--
+
Langkah 2.11
Jawaban akhirnya adalah hasil bagi ditambah sisanya per pembagi.
Langkah 3
Bagi integral tunggal menjadi beberapa integral.
Langkah 4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 6
Terapkan aturan konstanta.
Langkah 7
Gabungkan dan .
Langkah 8
Integral dari terhadap adalah .
Langkah 9
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Sederhanakan.
Langkah 9.2
Susun kembali suku-suku.