Masukkan soal...
Aljabar Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.2
Evaluasi .
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Gabungkan dan .
Langkah 2.2.4
Gabungkan dan .
Langkah 2.3
Evaluasi .
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Kalikan dengan .
Langkah 2.3.4
Gabungkan dan .
Langkah 2.3.5
Kalikan dengan .
Langkah 2.3.6
Gabungkan dan .
Langkah 2.3.7
Hapus faktor persekutuan dari dan .
Langkah 2.3.7.1
Faktorkan dari .
Langkah 2.3.7.2
Batalkan faktor persekutuan.
Langkah 2.3.7.2.1
Faktorkan dari .
Langkah 2.3.7.2.2
Batalkan faktor persekutuan.
Langkah 2.3.7.2.3
Tulis kembali pernyataannya.
Langkah 2.3.8
Pindahkan tanda negatif di depan pecahan.
Langkah 3
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.2
Evaluasi .
Langkah 3.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.3
Gabungkan dan .
Langkah 3.2.4
Kalikan dengan .
Langkah 3.2.5
Gabungkan dan .
Langkah 3.2.6
Hapus faktor persekutuan dari dan .
Langkah 3.2.6.1
Faktorkan dari .
Langkah 3.2.6.2
Batalkan faktor persekutuan.
Langkah 3.2.6.2.1
Faktorkan dari .
Langkah 3.2.6.2.2
Batalkan faktor persekutuan.
Langkah 3.2.6.2.3
Tulis kembali pernyataannya.
Langkah 3.3
Evaluasi .
Langkah 3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.3
Kalikan dengan .
Langkah 3.3.4
Gabungkan dan .
Langkah 3.3.5
Kalikan dengan .
Langkah 3.3.6
Gabungkan dan .
Langkah 3.3.7
Pindahkan tanda negatif di depan pecahan.
Langkah 4
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 5
Langkah 5.1
Tentukan turunan pertamanya.
Langkah 5.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 5.1.2
Evaluasi .
Langkah 5.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.1.2.3
Gabungkan dan .
Langkah 5.1.2.4
Gabungkan dan .
Langkah 5.1.3
Evaluasi .
Langkah 5.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.1.3.3
Kalikan dengan .
Langkah 5.1.3.4
Gabungkan dan .
Langkah 5.1.3.5
Kalikan dengan .
Langkah 5.1.3.6
Gabungkan dan .
Langkah 5.1.3.7
Hapus faktor persekutuan dari dan .
Langkah 5.1.3.7.1
Faktorkan dari .
Langkah 5.1.3.7.2
Batalkan faktor persekutuan.
Langkah 5.1.3.7.2.1
Faktorkan dari .
Langkah 5.1.3.7.2.2
Batalkan faktor persekutuan.
Langkah 5.1.3.7.2.3
Tulis kembali pernyataannya.
Langkah 5.1.3.8
Pindahkan tanda negatif di depan pecahan.
Langkah 5.2
Turunan pertama dari terhadap adalah .
Langkah 6
Langkah 6.1
Buat turunan pertamanya agar sama dengan .
Langkah 6.2
Kalikan setiap suku pada dengan untuk mengeliminasi pecahan.
Langkah 6.2.1
Kalikan setiap suku dalam dengan .
Langkah 6.2.2
Sederhanakan sisi kirinya.
Langkah 6.2.2.1
Sederhanakan setiap suku.
Langkah 6.2.2.1.1
Batalkan faktor persekutuan dari .
Langkah 6.2.2.1.1.1
Batalkan faktor persekutuan.
Langkah 6.2.2.1.1.2
Tulis kembali pernyataannya.
Langkah 6.2.2.1.2
Batalkan faktor persekutuan dari .
Langkah 6.2.2.1.2.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 6.2.2.1.2.2
Faktorkan dari .
Langkah 6.2.2.1.2.3
Batalkan faktor persekutuan.
Langkah 6.2.2.1.2.4
Tulis kembali pernyataannya.
Langkah 6.2.2.1.3
Kalikan dengan .
Langkah 6.2.3
Sederhanakan sisi kanannya.
Langkah 6.2.3.1
Kalikan dengan .
Langkah 6.3
Faktorkan dari .
Langkah 6.3.1
Faktorkan dari .
Langkah 6.3.2
Faktorkan dari .
Langkah 6.3.3
Faktorkan dari .
Langkah 6.4
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 6.5
Atur agar sama dengan dan selesaikan .
Langkah 6.5.1
Atur sama dengan .
Langkah 6.5.2
Selesaikan untuk .
Langkah 6.5.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 6.5.2.2
Sederhanakan .
Langkah 6.5.2.2.1
Tulis kembali sebagai .
Langkah 6.5.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 6.5.2.2.3
Tambah atau kurang adalah .
Langkah 6.6
Atur agar sama dengan dan selesaikan .
Langkah 6.6.1
Atur sama dengan .
Langkah 6.6.2
Tambahkan ke kedua sisi persamaan.
Langkah 6.7
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 7
Langkah 7.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 8
Titik kritis untuk dievaluasi.
Langkah 9
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 10
Langkah 10.1
Gabungkan pembilang dari penyebut persekutuan.
Langkah 10.2
Sederhanakan setiap suku.
Langkah 10.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 10.2.2
Kalikan dengan .
Langkah 10.2.3
Kalikan dengan .
Langkah 10.3
Sederhanakan pernyataannya.
Langkah 10.3.1
Tambahkan dan .
Langkah 10.3.2
Bagilah dengan .
Langkah 11
Langkah 11.1
Bagi menjadi interval terpisah di sekitar nilai yang membuat turunan pertamanya atau tidak terdefinisi.
Langkah 11.2
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Langkah 11.2.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2.2
Sederhanakan hasilnya.
Langkah 11.2.2.1
Sederhanakan setiap suku.
Langkah 11.2.2.1.1
Naikkan menjadi pangkat .
Langkah 11.2.2.1.2
Kalikan dengan .
Langkah 11.2.2.1.3
Pindahkan tanda negatif di depan pecahan.
Langkah 11.2.2.1.4
Naikkan menjadi pangkat .
Langkah 11.2.2.1.5
Kalikan dengan .
Langkah 11.2.2.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 11.2.2.3
Tulis setiap pernyataan menggunakan penyebut umum dari , dengan mengalikan masing-masing pembilang dan penyebut dengan faktor dari yang sesuai.
Langkah 11.2.2.3.1
Kalikan dengan .
Langkah 11.2.2.3.2
Kalikan dengan .
Langkah 11.2.2.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 11.2.2.5
Sederhanakan pembilangnya.
Langkah 11.2.2.5.1
Kalikan dengan .
Langkah 11.2.2.5.2
Kurangi dengan .
Langkah 11.2.2.6
Pindahkan tanda negatif di depan pecahan.
Langkah 11.2.2.7
Jawaban akhirnya adalah .
Langkah 11.3
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Langkah 11.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.3.2
Sederhanakan hasilnya.
Langkah 11.3.2.1
Sederhanakan setiap suku.
Langkah 11.3.2.1.1
Sederhanakan pembilangnya.
Langkah 11.3.2.1.1.1
Tulis kembali sebagai .
Langkah 11.3.2.1.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 11.3.2.1.1.3
Tambahkan dan .
Langkah 11.3.2.1.2
Naikkan menjadi pangkat .
Langkah 11.3.2.1.3
Sederhanakan pembilangnya.
Langkah 11.3.2.1.3.1
Tulis kembali sebagai .
Langkah 11.3.2.1.3.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 11.3.2.1.3.3
Tambahkan dan .
Langkah 11.3.2.1.4
Naikkan menjadi pangkat .
Langkah 11.3.2.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 11.3.2.3
Tulis setiap pernyataan menggunakan penyebut umum dari , dengan mengalikan masing-masing pembilang dan penyebut dengan faktor dari yang sesuai.
Langkah 11.3.2.3.1
Kalikan dengan .
Langkah 11.3.2.3.2
Kalikan dengan .
Langkah 11.3.2.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 11.3.2.5
Sederhanakan pembilangnya.
Langkah 11.3.2.5.1
Kalikan dengan .
Langkah 11.3.2.5.2
Kurangi dengan .
Langkah 11.3.2.6
Pindahkan tanda negatif di depan pecahan.
Langkah 11.3.2.7
Jawaban akhirnya adalah .
Langkah 11.4
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Langkah 11.4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.4.2
Sederhanakan hasilnya.
Langkah 11.4.2.1
Sederhanakan setiap suku.
Langkah 11.4.2.1.1
Naikkan menjadi pangkat .
Langkah 11.4.2.1.2
Kalikan dengan .
Langkah 11.4.2.1.3
Bagilah dengan .
Langkah 11.4.2.1.4
Naikkan menjadi pangkat .
Langkah 11.4.2.1.5
Kalikan dengan .
Langkah 11.4.2.1.6
Bagilah dengan .
Langkah 11.4.2.1.7
Kalikan dengan .
Langkah 11.4.2.2
Kurangi dengan .
Langkah 11.4.2.3
Jawaban akhirnya adalah .
Langkah 11.5
Karena turunan pertamanya tidak mengubah tanda-tanda di sekitar , ini bukan merupakan maksimum atau minimum lokal.
Bukan maksimum atau minimum lokal
Langkah 11.6
Karena turunan pertamanya diubah tandanya dari negatif menjadi positif di sekitar , maka adalah minimum lokal.
adalah minimum lokal
adalah minimum lokal
Langkah 12