Masukkan soal...
Aljabar Contoh
Langkah 1
Langkah 1.1
Tentukan turunan keduanya.
Langkah 1.1.1
Tentukan turunan pertamanya.
Langkah 1.1.1.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.1.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.1.1.1.2
Turunan dari terhadap adalah .
Langkah 1.1.1.1.3
Ganti semua kemunculan dengan .
Langkah 1.1.1.2
Diferensialkan.
Langkah 1.1.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.2.4
Gabungkan pecahan.
Langkah 1.1.1.2.4.1
Tambahkan dan .
Langkah 1.1.1.2.4.2
Gabungkan dan .
Langkah 1.1.1.2.4.3
Gabungkan dan .
Langkah 1.1.2
Tentukan turunan keduanya.
Langkah 1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.2.3
Diferensialkan.
Langkah 1.1.2.3.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.3.2
Kalikan dengan .
Langkah 1.1.2.3.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.2.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.3.6
Sederhanakan pernyataannya.
Langkah 1.1.2.3.6.1
Tambahkan dan .
Langkah 1.1.2.3.6.2
Kalikan dengan .
Langkah 1.1.2.4
Naikkan menjadi pangkat .
Langkah 1.1.2.5
Naikkan menjadi pangkat .
Langkah 1.1.2.6
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.1.2.7
Tambahkan dan .
Langkah 1.1.2.8
Kurangi dengan .
Langkah 1.1.2.9
Gabungkan dan .
Langkah 1.1.2.10
Sederhanakan.
Langkah 1.1.2.10.1
Terapkan sifat distributif.
Langkah 1.1.2.10.2
Sederhanakan setiap suku.
Langkah 1.1.2.10.2.1
Kalikan dengan .
Langkah 1.1.2.10.2.2
Kalikan dengan .
Langkah 1.1.3
Turunan kedua dari terhadap adalah .
Langkah 1.2
Atur turunan keduanya agar sama dengan dan selesaikan persamaan .
Langkah 1.2.1
Atur turunan keduanya sama dengan .
Langkah 1.2.2
Atur agar pembilangnya sama dengan nol.
Langkah 1.2.3
Selesaikan persamaan untuk .
Langkah 1.2.3.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.2.3.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 1.2.3.2.1
Bagilah setiap suku di dengan .
Langkah 1.2.3.2.2
Sederhanakan sisi kirinya.
Langkah 1.2.3.2.2.1
Batalkan faktor persekutuan dari .
Langkah 1.2.3.2.2.1.1
Batalkan faktor persekutuan.
Langkah 1.2.3.2.2.1.2
Bagilah dengan .
Langkah 1.2.3.2.3
Sederhanakan sisi kanannya.
Langkah 1.2.3.2.3.1
Bagilah dengan .
Langkah 1.2.3.3
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 1.2.3.4
Sebarang akar dari adalah .
Langkah 1.2.3.5
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 1.2.3.5.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 1.2.3.5.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 1.2.3.5.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 2
Langkah 2.1
Atur argumen dalam agar lebih besar dari untuk menentukan di mana pernyataannya terdefinisi.
Langkah 2.2
Selesaikan .
Langkah 2.2.1
Kurangkan pada kedua sisi pertidaksamaan tersebut.
Langkah 2.2.2
Karena sisi kiri memiliki pangkat genap, maka selalu positif untuk semua bilangan riil.
Semua bilangan riil
Semua bilangan riil
Langkah 2.3
Domain adalah semua bilangan riil.
Notasi Interval:
Notasi Pembuat Himpunan:
Notasi Interval:
Notasi Pembuat Himpunan:
Langkah 3
Buat interval di sekitar nilai saat turunan keduanya bernilai nol atau tak hingga.
Langkah 4
Langkah 4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.2
Sederhanakan hasilnya.
Langkah 4.2.1
Sederhanakan pembilangnya.
Langkah 4.2.1.1
Naikkan menjadi pangkat .
Langkah 4.2.1.2
Kalikan dengan .
Langkah 4.2.1.3
Tambahkan dan .
Langkah 4.2.2
Sederhanakan penyebutnya.
Langkah 4.2.2.1
Naikkan menjadi pangkat .
Langkah 4.2.2.2
Tambahkan dan .
Langkah 4.2.2.3
Naikkan menjadi pangkat .
Langkah 4.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 4.2.4
Jawaban akhirnya adalah .
Langkah 4.3
Grafiknya cekung ke bawah pada interval karena negatif.
Cekung ke bawah pada karena negatif
Cekung ke bawah pada karena negatif
Langkah 5
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Langkah 5.2.1
Sederhanakan pembilangnya.
Langkah 5.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 5.2.1.2
Kalikan dengan .
Langkah 5.2.1.3
Tambahkan dan .
Langkah 5.2.2
Sederhanakan penyebutnya.
Langkah 5.2.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 5.2.2.2
Tambahkan dan .
Langkah 5.2.2.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 5.2.3
Bagilah dengan .
Langkah 5.2.4
Jawaban akhirnya adalah .
Langkah 5.3
Grafiknya cekung ke atas pada interval karena positif.
Cekung ke atas pada karena positif
Cekung ke atas pada karena positif
Langkah 6
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Langkah 6.2.1
Sederhanakan pembilangnya.
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Tambahkan dan .
Langkah 6.2.2
Sederhanakan penyebutnya.
Langkah 6.2.2.1
Naikkan menjadi pangkat .
Langkah 6.2.2.2
Tambahkan dan .
Langkah 6.2.2.3
Naikkan menjadi pangkat .
Langkah 6.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 6.2.4
Jawaban akhirnya adalah .
Langkah 6.3
Grafiknya cekung ke bawah pada interval karena negatif.
Cekung ke bawah pada karena negatif
Cekung ke bawah pada karena negatif
Langkah 7
Grafiknya cekung ke bawah ketika turunan keduanya negatif dan cekung ke atas ketika turunan keduanya positif.
Cekung ke bawah pada karena negatif
Cekung ke atas pada karena positif
Cekung ke bawah pada karena negatif
Langkah 8