Aljabar Contoh

Sederhanakan 2>=2+2(3x+4)+x^2
Langkah 1
Tulis kembali sehingga di sisi kiri pertidaksamaan.
Langkah 2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Terapkan sifat distributif.
Langkah 2.1.2
Kalikan dengan .
Langkah 2.1.3
Kalikan dengan .
Langkah 2.2
Tambahkan dan .
Langkah 3
Konversikan pertidaksamaan ke persamaan.
Langkah 4
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5
Kurangi dengan .
Langkah 6
Faktorkan sisi kiri persamaannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Biarkan . Masukkan untuk semua kejadian .
Langkah 6.2
Faktorkan menggunakan metode AC.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Mempertimbangkan bentuk . Tentukan pasangan bilangan bulat yang hasil kalinya (Variabel1) dan jumlahnya . Dalam hal ini, hasil kalinya dan jumlahnya .
Langkah 6.2.2
Tulis bentuk yang difaktorkan menggunakan bilangan bulat ini.
Langkah 6.3
Ganti semua kemunculan dengan .
Langkah 7
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 8
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Atur sama dengan .
Langkah 8.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 9
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Atur sama dengan .
Langkah 9.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 10
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 11
Gunakan masing-masing akar untuk membuat interval pengujian.
Langkah 12
Pilih nilai uji dari masing-masing interval dan masukkan nilai ini ke dalam pertidaksamaan asal untuk menentukan interval mana yang memenuhi pertidaksamaan.
Ketuk untuk lebih banyak langkah...
Langkah 12.1
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 12.1.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 12.1.2
Ganti dengan pada pertidaksamaan asal.
Langkah 12.1.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan salah.
Salah
Salah
Langkah 12.2
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 12.2.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 12.2.2
Ganti dengan pada pertidaksamaan asal.
Langkah 12.2.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
Benar
Benar
Langkah 12.3
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 12.3.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 12.3.2
Ganti dengan pada pertidaksamaan asal.
Langkah 12.3.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan salah.
Salah
Salah
Langkah 12.4
Bandingkan interval untuk menentukan mana yang memenuhi pertidaksamaan asal.
Salah
Benar
Salah
Salah
Benar
Salah
Langkah 13
Penyelesaian tersebut terdiri dari semua interval hakiki.
Langkah 14
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Ketidaksamaan:
Notasi Interval:
Langkah 15