Aljabar Contoh

Tentukan Perpotongan dengan sumbu x dan y f(x) = log base 1/3 of x+1-2
Langkah 1
Tentukan perpotongan sumbu x.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Untuk mencari perpotongan sumbu x, substitusikan ke dan selesaikan .
Langkah 1.2
Selesaikan persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Tulis kembali persamaan tersebut sebagai .
Langkah 1.2.2
Tambahkan ke kedua sisi persamaan.
Langkah 1.2.3
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 1.2.4
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.4.1
Tulis kembali persamaan tersebut sebagai .
Langkah 1.2.4.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.4.2.1
Terapkan kaidah hasil kali ke .
Langkah 1.2.4.2.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 1.2.4.2.3
Naikkan menjadi pangkat .
Langkah 1.2.4.3
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.4.3.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.2.4.3.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.2.4.3.3
Gabungkan dan .
Langkah 1.2.4.3.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.2.4.3.5
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.4.3.5.1
Kalikan dengan .
Langkah 1.2.4.3.5.2
Kurangi dengan .
Langkah 1.2.4.3.6
Pindahkan tanda negatif di depan pecahan.
Langkah 1.3
perpotongan sumbu x dalam bentuk titik.
perpotongan sumbu x:
perpotongan sumbu x:
Langkah 2
Tentukan perpotongan sumbu y.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Untuk mencari perpotongan sumbu y, substitusikan ke dan selesaikan .
Langkah 2.2
Selesaikan persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Hilangkan tanda kurung.
Langkah 2.2.2
Hilangkan tanda kurung.
Langkah 2.2.3
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.3.1.1
Tambahkan dan .
Langkah 2.2.3.1.2
Basis logaritma dari adalah .
Langkah 2.2.3.2
Kurangi dengan .
Langkah 2.3
perpotongan sumbu y dalam bentuk titik.
perpotongan sumbu y:
perpotongan sumbu y:
Langkah 3
Sebutkan perpotongan-perpotongannya.
perpotongan sumbu x:
perpotongan sumbu y:
Langkah 4