Aljabar Contoh

Selesaikan untuk x 2 log dari (2x)^4=16
Langkah 1
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Bagilah setiap suku di dengan .
Langkah 1.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1.1
Batalkan faktor persekutuan.
Langkah 1.2.1.2
Bagilah dengan .
Langkah 1.2.2
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.2.1
Terapkan kaidah hasil kali ke .
Langkah 1.2.2.2
Naikkan menjadi pangkat .
Langkah 1.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Bagilah dengan .
Langkah 2
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Tulis kembali persamaan tersebut sebagai .
Langkah 3.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Bagilah setiap suku di dengan .
Langkah 3.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1.1
Batalkan faktor persekutuan.
Langkah 3.2.2.1.2
Bagilah dengan .
Langkah 3.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.3.1
Naikkan menjadi pangkat .
Langkah 3.2.3.2
Bagilah dengan .
Langkah 3.3
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 3.4
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Tulis kembali sebagai .
Langkah 3.4.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 3.5
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 3.5.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 3.5.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.