Aljabar Contoh

Tentukan Inversnya f(x)=500(0.04-x^2)
Langkah 1
Tuliskan sebagai sebuah persamaan.
Langkah 2
Saling tukar variabel.
Langkah 3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Tulis kembali persamaan tersebut sebagai .
Langkah 3.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Bagilah setiap suku di dengan .
Langkah 3.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1.1
Batalkan faktor persekutuan.
Langkah 3.2.2.1.2
Bagilah dengan .
Langkah 3.3
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.4
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Bagilah setiap suku di dengan .
Langkah 3.4.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 3.4.2.2
Bagilah dengan .
Langkah 3.4.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.3.1.1
Pindahkan tanda negatif dari penyebut .
Langkah 3.4.3.1.2
Tulis kembali sebagai .
Langkah 3.4.3.1.3
Bagilah dengan .
Langkah 3.5
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 3.6
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 3.6.2
Sederhanakan suku-suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.6.2.1
Gabungkan dan .
Langkah 3.6.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 3.6.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 3.6.3.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.3.1.1
Faktorkan dari .
Langkah 3.6.3.1.2
Faktorkan dari .
Langkah 3.6.3.1.3
Faktorkan dari .
Langkah 3.6.3.2
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.3.2.1
Faktorkan dari .
Langkah 3.6.3.2.2
Faktorkan dari .
Langkah 3.6.3.2.3
Faktorkan dari .
Langkah 3.6.3.3
Gabungkan eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 3.6.3.3.1
Kalikan dengan .
Langkah 3.6.3.3.2
Kalikan dengan .
Langkah 3.6.4
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.4.1
Faktorkan kuadrat sempurna dari .
Langkah 3.6.4.2
Faktorkan kuadrat sempurna dari .
Langkah 3.6.4.3
Susun kembali pecahan .
Langkah 3.6.5
Mengeluarkan suku-suku dari bawah akar.
Langkah 3.6.6
Tulis kembali sebagai .
Langkah 3.6.7
Kalikan dengan .
Langkah 3.6.8
Gabungkan dan sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 3.6.8.1
Kalikan dengan .
Langkah 3.6.8.2
Naikkan menjadi pangkat .
Langkah 3.6.8.3
Naikkan menjadi pangkat .
Langkah 3.6.8.4
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 3.6.8.5
Tambahkan dan .
Langkah 3.6.8.6
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.8.6.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 3.6.8.6.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 3.6.8.6.3
Gabungkan dan .
Langkah 3.6.8.6.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.8.6.4.1
Batalkan faktor persekutuan.
Langkah 3.6.8.6.4.2
Tulis kembali pernyataannya.
Langkah 3.6.8.6.5
Evaluasi eksponennya.
Langkah 3.6.9
Gabungkan menggunakan kaidah hasil kali untuk akar.
Langkah 3.6.10
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.10.1
Kalikan dengan .
Langkah 3.6.10.2
Kalikan dengan .
Langkah 3.6.11
Susun kembali faktor-faktor dalam .
Langkah 3.7
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.7.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 3.7.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 3.7.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 4
Ganti dengan untuk memunculkan jawaban akhir.
Langkah 5
Periksa apakah merupakan balikan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Domain dari balikan adalah daerah hasil dari fungsi asal dan sebaliknya. Tentukan domain dan daerah hasil dari dan dan bandingkan.
Langkah 5.2
Tentukan daerah hasil dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Jangkauannya adalah himpunan dari semua nilai yang valid. Gunakan grafik untuk mencari intervalnya.
Notasi Interval:
Langkah 5.3
Tentukan domain dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Atur bilangan di bawah akar dalam agar lebih besar dari atau sama dengan untuk menentukan di mana pernyataannya terdefinisi.
Langkah 5.3.2
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1.1
Bagilah setiap suku di dengan .
Langkah 5.3.2.1.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1.2.1.1
Batalkan faktor persekutuan.
Langkah 5.3.2.1.2.1.2
Bagilah dengan .
Langkah 5.3.2.1.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1.3.1
Bagilah dengan .
Langkah 5.3.2.2
Kurangkan pada kedua sisi pertidaksamaan tersebut.
Langkah 5.3.2.3
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.3.1
Bagi setiap suku dalam dengan . Ketika mengalikan atau membagi kedua sisi pertidaksamaan dengan nilai negatif, balik arah tanda pertidaksamaan.
Langkah 5.3.2.3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.3.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 5.3.2.3.2.2
Bagilah dengan .
Langkah 5.3.2.3.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.3.3.1
Bagilah dengan .
Langkah 5.3.3
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Langkah 5.4
Karena domain dari tidak sama dengan daerah hasil dari , maka merupakan balikan dari .
Tidak ada balikan
Tidak ada balikan
Langkah 6