समस्या दर्ज करें...
ट्रिगोनोमेट्री उदाहरण
चरण 1
चरण 1.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 1.2
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 1.3
के गुणनखंड और हैं.
चरण 1.4
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 1.5
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 1.6
को से गुणा करें.
चरण 1.7
का गुणनखंड ही है.
बार आता है.
चरण 1.8
का LCM (न्यूनतम सामान्य गुणक) सभी गुणनखंडों को किसी भी पद में सबसे बड़ी संख्या में गुणा करने का परिणाम है.
चरण 1.9
कुछ संख्याओं का लघुत्तम समापवर्तक वह सबसे छोटी संख्या होती है, जिसके गुणनखंड होते हैं.
चरण 2
चरण 2.1
के प्रत्येक पद को से गुणा करें.
चरण 2.2
बाईं ओर को सरल बनाएंं.
चरण 2.2.1
सामान्य गुणनखंडों को रद्द करके व्यंजक को छोटा करें.
चरण 2.2.1.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.2.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.2.2
व्यंजक को फिर से लिखें.
चरण 2.2.2
FOIL विधि का उपयोग करके का प्रसार करें.
चरण 2.2.2.1
वितरण गुणधर्म लागू करें.
चरण 2.2.2.2
वितरण गुणधर्म लागू करें.
चरण 2.2.2.3
वितरण गुणधर्म लागू करें.
चरण 2.2.3
पदों को सरल करें.
चरण 2.2.3.1
में विपरीत पदों को मिलाएं.
चरण 2.2.3.1.1
गुणनखंडों को और पदों में पुन: व्यवस्थित करें.
चरण 2.2.3.1.2
में से घटाएं.
चरण 2.2.3.1.3
और जोड़ें.
चरण 2.2.3.2
प्रत्येक पद को सरल करें.
चरण 2.2.3.2.1
को से गुणा करें.
चरण 2.2.3.2.2
को से गुणा करें.
चरण 2.3
दाईं ओर को सरल बनाएंं.
चरण 2.3.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.3.2
गुणा करें.
चरण 2.3.2.1
और को मिलाएं.
चरण 2.3.2.2
को से गुणा करें.
चरण 2.3.3
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.3.2
व्यंजक को फिर से लिखें.
चरण 3
चरण 3.1
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
चरण 3.1.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.1.2
और जोड़ें.
चरण 3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 3.3
को सरल करें.
चरण 3.3.1
को के रूप में फिर से लिखें.
चरण 3.3.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 3.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.