प्री-कैलकुलस उदाहरण

चरण 1
वाले सभी पदों को समीकरण के बाईं ओर ले जाएँ.
और स्टेप्स के लिए टैप करें…
चरण 1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 1.3
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.4
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.5
प्रत्येक व्यंजक को के सामान्य भाजक के साथ लिखें, प्रत्येक को के उपयुक्त गुणनखंड से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.1
को से गुणा करें.
चरण 1.5.2
को से गुणा करें.
चरण 1.5.3
के गुणनखंडों को फिर से क्रमित करें.
चरण 1.6
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.7
में से घटाएं.
चरण 2
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 2.2
एक और किसी भी व्यंजक का LCM (लघुत्तम समापवर्तक) व्यंजक है.
चरण 3
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के प्रत्येक पद को से गुणा करें.
चरण 3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.2
व्यंजक को फिर से लिखें.
चरण 3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
से गुणा करके सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.1
वितरण गुणधर्म लागू करें.
चरण 3.3.1.2
पुन: व्यवस्थित करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.2.1
को के बाईं ओर ले जाएं.
चरण 3.3.1.2.2
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.3.2
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1
ले जाएं.
चरण 3.3.2.2
को से गुणा करें.
चरण 3.3.3
से गुणा करके सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.1
वितरण गुणधर्म लागू करें.
चरण 3.3.3.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.2.1
को से गुणा करें.
चरण 3.3.3.2.2
को से गुणा करें.
चरण 4
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
चूंकि समीकरण के दाएं पक्ष की ओर है, पक्षों को स्विच करें ताकि यह समीकरण के बाएं पक्ष की ओर हो.
चरण 4.2
वाले सभी पदों को समीकरण के बाईं ओर ले जाएँ.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4.2.2
और जोड़ें.
चरण 4.3
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.4
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 4.5
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 4.6
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.6.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.6.1.1
को के घात तक बढ़ाएं.
चरण 4.6.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.6.1.2.1
को से गुणा करें.
चरण 4.6.1.2.2
को से गुणा करें.
चरण 4.6.1.3
और जोड़ें.
चरण 4.6.1.4
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 4.6.1.4.1
में से का गुणनखंड करें.
चरण 4.6.1.4.2
को के रूप में फिर से लिखें.
चरण 4.6.1.5
करणी से पदों को बाहर निकालें.
चरण 4.6.2
को से गुणा करें.
चरण 4.6.3
को सरल करें.
चरण 4.7
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 5
को हल करने के लिए प्रत्येक हल सेट करें.
चरण 6
के लिए में हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
चरण 6.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
का मान ज्ञात करें.
चरण 6.3
पहले और दूसरे चतुर्थांश में ज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, दूसरे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
चरण 6.4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.4.1
कोष्ठक हटा दें.
चरण 6.4.2
कोष्ठक हटा दें.
चरण 6.4.3
में से घटाएं.
चरण 6.5
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 6.5.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 6.5.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 6.5.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 6.5.4
को से विभाजित करें.
चरण 6.6
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
चरण 7
के लिए में हल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
चरण 7.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
का मान ज्ञात करें.
चरण 7.3
पहले और दूसरे चतुर्थांश में ज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, दूसरे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
चरण 7.4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.4.1
कोष्ठक हटा दें.
चरण 7.4.2
कोष्ठक हटा दें.
चरण 7.4.3
और जोड़ें.
चरण 7.5
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 7.5.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 7.5.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 7.5.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 7.5.4
को से विभाजित करें.
चरण 7.6
धनात्मक कोण प्राप्त करने के लिए प्रत्येक ऋणात्मक कोण में जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 7.6.1
धनात्मक कोण ज्ञात करने के लिए को में जोड़ें.
चरण 7.6.2
में से घटाएं.
चरण 7.6.3
नए कोणों की सूची बनाएंं.
चरण 7.7
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
चरण 8
सभी हलों की सूची बनाएंं.
, किसी भी पूर्णांक के लिए