समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
अवकलन करें.
चरण 1.1.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 1.3
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.3.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.3.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 1.3.3
की सभी घटनाओं को से बदलें.
चरण 1.4
अवकलन करें.
चरण 1.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.4.3
व्यंजक को सरल बनाएंं.
चरण 1.4.3.1
को से गुणा करें.
चरण 1.4.3.2
को के बाईं ओर ले जाएं.
चरण 1.4.3.3
को के रूप में फिर से लिखें.
चरण 1.5
सरल करें.
चरण 1.5.1
वितरण गुणधर्म लागू करें.
चरण 1.5.2
और को मिलाएं.
चरण 1.5.3
और को मिलाएं.
चरण 2
चरण 2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2
का मान ज्ञात करें.
चरण 2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.3
का मान ज्ञात करें.
चरण 2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.3.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.3.2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.3.2.3
की सभी घटनाओं को से बदलें.
चरण 2.3.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.5
को से गुणा करें.
चरण 2.3.6
को के बाईं ओर ले जाएं.
चरण 2.3.7
को के रूप में फिर से लिखें.
चरण 2.3.8
को से गुणा करें.
चरण 2.3.9
को से गुणा करें.
चरण 2.3.10
और को मिलाएं.
चरण 2.4
और को मिलाएं.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
चरण 4.1
पहला व्युत्पन्न पता करें.
चरण 4.1.1
अवकलन करें.
चरण 4.1.1.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.1.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 4.1.3
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 4.1.3.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 4.1.3.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 4.1.3.3
की सभी घटनाओं को से बदलें.
चरण 4.1.4
अवकलन करें.
चरण 4.1.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.4.3
व्यंजक को सरल बनाएंं.
चरण 4.1.4.3.1
को से गुणा करें.
चरण 4.1.4.3.2
को के बाईं ओर ले जाएं.
चरण 4.1.4.3.3
को के रूप में फिर से लिखें.
चरण 4.1.5
सरल करें.
चरण 4.1.5.1
वितरण गुणधर्म लागू करें.
चरण 4.1.5.2
और को मिलाएं.
चरण 4.1.5.3
और को मिलाएं.
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
को दोनों पक्षों में जोड़कर समीकरण के दाईं ओर ले जाएँ.
चरण 5.3
चूंकि समीकरण के प्रत्येक पक्ष के व्यंजक का हर समान होता है, इसलिए भाजक बराबर होने चाहिए.
चरण 5.4
चूंकि आधार समान हैं, तो दो व्यंजक केवल तभी बराबर होते हैं जब घातांक भी बराबर हों.
चरण 5.5
के लिए हल करें.
चरण 5.5.1
वाले सभी पदों को समीकरण के बाईं ओर ले जाएँ.
चरण 5.5.1.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 5.5.1.2
और जोड़ें.
चरण 5.5.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 5.5.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.5.2.2
बाईं ओर को सरल बनाएंं.
चरण 5.5.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.5.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.5.2.2.1.2
को से विभाजित करें.
चरण 5.5.2.3
दाईं ओर को सरल बनाएंं.
चरण 5.5.2.3.1
को से विभाजित करें.
चरण 6
चरण 6.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
चरण 9.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 9.2
प्रत्येक पद को सरल करें.
चरण 9.2.1
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 9.2.2
को से गुणा करें.
चरण 9.2.3
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 9.3
सामान्य गुणनखंडों को रद्द करके व्यंजक को छोटा करें.
चरण 9.3.1
और जोड़ें.
चरण 9.3.2
और के उभयनिष्ठ गुणनखंड को रद्द करें.
चरण 9.3.2.1
में से का गुणनखंड करें.
चरण 9.3.2.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 9.3.2.2.1
में से का गुणनखंड करें.
चरण 9.3.2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.3.2.2.3
व्यंजक को फिर से लिखें.
चरण 10
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
चरण 11
चरण 11.1
व्यंजक में चर को से बदलें.
चरण 11.2
परिणाम को सरल बनाएंं.
चरण 11.2.1
न्यूमेरेटर को सरल करें.
चरण 11.2.1.1
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 11.2.1.2
को से गुणा करें.
चरण 11.2.1.3
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 11.2.1.4
और जोड़ें.
चरण 11.2.2
और के उभयनिष्ठ गुणनखंड को रद्द करें.
चरण 11.2.2.1
में से का गुणनखंड करें.
चरण 11.2.2.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 11.2.2.2.1
में से का गुणनखंड करें.
चरण 11.2.2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 11.2.2.2.3
व्यंजक को फिर से लिखें.
चरण 11.2.3
अंतिम उत्तर है.
चरण 12
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय निम्नत्तम है
चरण 13