कैलकुलस उदाहरण

अवकलजों का उपयोग करके पता लगाए कहाँ बढ़ /घट रहा है f(x)=x^(2/3)-x
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.1.2.3
और को मिलाएं.
चरण 1.1.2.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.1.2.5
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.5.1
को से गुणा करें.
चरण 1.1.2.5.2
में से घटाएं.
चरण 1.1.2.6
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.3
को से गुणा करें.
चरण 1.1.4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 1.1.4.2
को से गुणा करें.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.3
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 2.3.2
एक और किसी भी व्यंजक का LCM (लघुत्तम समापवर्तक) व्यंजक है.
चरण 2.4
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
के प्रत्येक पद को से गुणा करें.
चरण 2.4.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.4.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.4.2.2.2
व्यंजक को फिर से लिखें.
चरण 2.4.2.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.4.2.3.2
व्यंजक को फिर से लिखें.
चरण 2.4.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.3.1
को से गुणा करें.
चरण 2.5
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
समीकरण को के रूप में फिर से लिखें.
चरण 2.5.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.5.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.5.2.2.2
को से विभाजित करें.
चरण 2.5.3
बाईं ओर के भिन्नात्मक घातांक को समाप्त करने के लिए समीकरण के प्रत्येक पक्ष को की घात तक बढ़ाएँ.
चरण 2.5.4
घातांक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.1.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.1.1.1
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.1.1.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.5.4.1.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.1.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.5.4.1.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 2.5.4.1.1.2
सरल करें.
चरण 2.5.4.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.2.1.1
उत्पाद नियम को पर लागू करें.
चरण 2.5.4.2.1.2
को के घात तक बढ़ाएं.
चरण 2.5.4.2.1.3
को के घात तक बढ़ाएं.
चरण 3
वे मान जो व्युत्पन्न को के बराबर बनाते हैं, वे हैं.
चरण 4
पता लगाएं कि व्युत्पन्न कहां अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 4.1
भिन्नात्मक घातांक वाले व्यंजकों को करणी में बदलें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
घातांक को मूलक के रूप में फिर से लिखने के लिए नियम लागू करें.
चरण 4.1.2
किसी भी चीज़ को तक बढ़ा दिया जाता है, वह आधार ही होता है.
चरण 4.2
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 4.3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
समीकरण के बाईं पक्ष की ओर मूलांक निकालने के लिए, समीकरण के दोनों पक्षों को घन करें.
चरण 4.3.2
समीकरण के प्रत्येक पक्ष को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 4.3.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.2.1.1
उत्पाद नियम को पर लागू करें.
चरण 4.3.2.2.1.2
को के घात तक बढ़ाएं.
चरण 4.3.2.2.1.3
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.2.1.3.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 4.3.2.2.1.3.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.2.1.3.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.2.2.1.3.2.2
व्यंजक को फिर से लिखें.
चरण 4.3.2.2.1.4
सरल करें.
चरण 4.3.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.3.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 4.3.3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.3.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.3.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.3.2.1.2
को से विभाजित करें.
चरण 4.3.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.3.3.3.1
को से विभाजित करें.
चरण 5
को मानों के आस-पास अलग-अलग अंतराल में विभाजित करें जो व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 6
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.1
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.1.1
को के रूप में फिर से लिखें.
चरण 6.2.1.1.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 6.2.1.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.1.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.2.1.1.3.2
व्यंजक को फिर से लिखें.
चरण 6.2.1.1.4
घातांक का मान ज्ञात करें.
चरण 6.2.1.2
को से गुणा करें.
चरण 6.2.1.3
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 6.2.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 6.2.3
और को मिलाएं.
चरण 6.2.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 6.2.5
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.5.1
को से गुणा करें.
चरण 6.2.5.2
में से घटाएं.
चरण 6.2.6
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 6.2.7
अंतिम उत्तर है.
चरण 6.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 7
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1.1
को के घात तक बढ़ाएं.
चरण 7.2.1.2
को से गुणा करें.
चरण 7.2.1.3
को से विभाजित करें.
चरण 7.2.2
में से घटाएं.
चरण 7.2.3
अंतिम उत्तर है.
चरण 7.3
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 8
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
व्यंजक में चर को से बदलें.
चरण 8.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1.1
को के घात तक बढ़ाएं.
चरण 8.2.1.2
को से गुणा करें.
चरण 8.2.1.3
को से विभाजित करें.
चरण 8.2.2
में से घटाएं.
चरण 8.2.3
अंतिम उत्तर है.
चरण 8.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 9
उन अंतरालों की सूची बनाइए जिन पर फलन बढ़ रहा है और घट रहा है.
बढ़ रहा है:
इस पर घटता हुआ:
चरण 10