समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
को एक फलन के रूप में लिखें.
चरण 2
चरण 2.1
पहला व्युत्पन्न पता करें.
चरण 2.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.1.2
का मान ज्ञात करें.
चरण 2.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.2.3
को से गुणा करें.
चरण 2.1.3
का मान ज्ञात करें.
चरण 2.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.3.3
को से गुणा करें.
चरण 2.2
का पहला व्युत्पन्न बटे , है.
चरण 3
चरण 3.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 3.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.3
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 3.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.3.2
बाईं ओर को सरल बनाएंं.
चरण 3.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.1.2
को से विभाजित करें.
चरण 3.3.3
दाईं ओर को सरल बनाएंं.
चरण 3.3.3.1
और के उभयनिष्ठ गुणनखंड को रद्द करें.
चरण 3.3.3.1.1
में से का गुणनखंड करें.
चरण 3.3.3.1.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 3.3.3.1.2.1
में से का गुणनखंड करें.
चरण 3.3.3.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.3.1.2.3
व्यंजक को फिर से लिखें.
चरण 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 3.5
को सरल करें.
चरण 3.5.1
को के रूप में फिर से लिखें.
चरण 3.5.2
का कोई भी मूल होता है.
चरण 3.5.3
को से गुणा करें.
चरण 3.5.4
भाजक को मिलाएं और सरल करें.
चरण 3.5.4.1
को से गुणा करें.
चरण 3.5.4.2
को के घात तक बढ़ाएं.
चरण 3.5.4.3
को के घात तक बढ़ाएं.
चरण 3.5.4.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 3.5.4.5
और जोड़ें.
चरण 3.5.4.6
को के रूप में फिर से लिखें.
चरण 3.5.4.6.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 3.5.4.6.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.5.4.6.3
और को मिलाएं.
चरण 3.5.4.6.4
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.5.4.6.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.5.4.6.4.2
व्यंजक को फिर से लिखें.
चरण 3.5.4.6.5
घातांक का मान ज्ञात करें.
चरण 3.6
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.6.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.6.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.6.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 4
वे मान जो व्युत्पन्न को के बराबर बनाते हैं, वे हैं.
चरण 5
को मानों के आस-पास अलग-अलग अंतराल में विभाजित करें जो व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 6
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
चरण 6.2.1
प्रत्येक पद को सरल करें.
चरण 6.2.1.1
को के घात तक बढ़ाएं.
चरण 6.2.1.2
को से गुणा करें.
चरण 6.2.2
में से घटाएं.
चरण 6.2.3
अंतिम उत्तर है.
चरण 6.3
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 7
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
चरण 7.2.1
प्रत्येक पद को सरल करें.
चरण 7.2.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 7.2.1.2
को से गुणा करें.
चरण 7.2.2
में से घटाएं.
चरण 7.2.3
अंतिम उत्तर है.
चरण 7.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 8
चरण 8.1
व्यंजक में चर को से बदलें.
चरण 8.2
परिणाम को सरल बनाएंं.
चरण 8.2.1
प्रत्येक पद को सरल करें.
चरण 8.2.1.1
को के घात तक बढ़ाएं.
चरण 8.2.1.2
को से गुणा करें.
चरण 8.2.2
में से घटाएं.
चरण 8.2.3
अंतिम उत्तर है.
चरण 8.3
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 9
उन अंतरालों की सूची बनाइए जिन पर फलन बढ़ रहा है और घट रहा है.
बढ़ रहा है:
इस पर घटता हुआ:
चरण 10