कैलकुलस उदाहरण

नति परिवर्तन बिन्दुओं का पता लगाएं (1-x)e^x
चरण 1
को एक फलन के रूप में लिखें.
चरण 2
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.1.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.1.3
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.1.3.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.3.3
और जोड़ें.
चरण 2.1.3.4
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.3.5
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.3.6
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.6.1
को से गुणा करें.
चरण 2.1.3.6.2
को के बाईं ओर ले जाएं.
चरण 2.1.3.6.3
को के रूप में फिर से लिखें.
चरण 2.1.4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.4.1
वितरण गुणधर्म लागू करें.
चरण 2.1.4.2
पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 2.1.4.2.1
को से गुणा करें.
चरण 2.1.4.2.2
में से घटाएं.
चरण 2.1.4.2.3
और जोड़ें.
चरण 2.1.4.3
के गुणनखंडों को फिर से क्रमित करें.
चरण 2.1.4.4
गुणनखंडों को में पुन: क्रमित करें.
चरण 2.2
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.2.3
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.2.4
घात नियम का उपयोग करके अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.4.1
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.4.2
को से गुणा करें.
चरण 2.2.5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.5.1
वितरण गुणधर्म लागू करें.
चरण 2.2.5.2
पदों को पुन: व्यवस्थित करें
चरण 2.2.5.3
गुणनखंडों को में पुन: क्रमित करें.
चरण 2.3
का दूसरा व्युत्पन्न बटे , है.
चरण 3
दूसरे व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
दूसरे व्युत्पन्न को के बराबर सेट करें.
चरण 3.2
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
में से का गुणनखंड करें.
चरण 3.2.2
में से का गुणनखंड करें.
चरण 3.2.3
में से का गुणनखंड करें.
चरण 3.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 3.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
को के बराबर सेट करें.
चरण 3.4.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1
घातांक से चर को हटाने के लिए समीकरण के दोनों पक्षों का प्राकृतिक लघुगणक लें.
चरण 3.4.2.2
समीकरण हल नहीं किया जा सकता क्योंकि अपरिभाषित है.
अपरिभाषित
चरण 3.4.2.3
का कोई हल नहीं है
कोई हल नहीं
कोई हल नहीं
कोई हल नहीं
चरण 3.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1
को के बराबर सेट करें.
चरण 3.5.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.5.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.5.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.2.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 3.5.2.2.2.2
को से विभाजित करें.
चरण 3.5.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.2.3.1
को से विभाजित करें.
चरण 3.6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 4
उन बिंदुओं को पता करें जहां दूसरा व्युत्पन्न है.
और स्टेप्स के लिए टैप करें…
चरण 4.1
का मान ज्ञात करने के लिए को में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
व्यंजक में चर को से बदलें.
चरण 4.1.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
को से गुणा करें.
चरण 4.1.2.2
और जोड़ें.
चरण 4.1.2.3
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 4.1.2.4
और को मिलाएं.
चरण 4.1.2.5
अंतिम उत्तर है.
चरण 4.2
को में प्रतिस्थापित करने पर पता किया जाने वाला बिंदु है. यह बिंदु एक विभक्ति बिंदु हो सकता है.
चरण 5
को उन बिंदुओं के आसपास के अंतराल में विभाजित करें जो संभावित रूप से विभक्ति बिंदु हो सकते हैं.
चरण 6
यह निर्धारित करने के लिए कि यह बढ़ता या घटता है, अंतराल से एक मान को दूसरे व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 6.2.1.2
और को मिलाएं.
चरण 6.2.1.3
को सन्निकटन से बदलें.
चरण 6.2.1.4
को के घात तक बढ़ाएं.
चरण 6.2.1.5
को से विभाजित करें.
चरण 6.2.1.6
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 6.2.2
में से घटाएं.
चरण 6.2.3
अंतिम उत्तर है.
चरण 6.3
पर, दूसरा व्युत्पन्न है. चूंकि यह धनात्मक है, इसलिए दूसरा अवकलज अंतराल पर बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 7
यह निर्धारित करने के लिए कि यह बढ़ता या घटता है, अंतराल से एक मान को दूसरे व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 7.2.1.2
और को मिलाएं.
चरण 7.2.1.3
को सन्निकटन से बदलें.
चरण 7.2.1.4
को के घात तक बढ़ाएं.
चरण 7.2.1.5
को से विभाजित करें.
चरण 7.2.1.6
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 7.2.2
में से घटाएं.
चरण 7.2.3
अंतिम उत्तर है.
चरण 7.3
पर, दूसरा व्युत्पन्न है. चूँकि यह ऋणात्मक है, इसलिए अंतराल पर दूसरा व्युत्पन्न घट रहा है
से पर घटता हुआ
से पर घटता हुआ
चरण 8
एक विभक्ति बिंदु एक वक्र पर एक बिंदु है, जिस पर अवतलता संकेत को जोड़ से घटाव या घटाव से जोड़ में बदल देती है. इस मामले में विभक्ति बिंदु है.
चरण 9