कैलकुलस उदाहरण

अवकलजों का उपयोग करके पता लगाए कहाँ बढ़ /घट रहा है f(x)=3cos(x)-cos(x)^3
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2
के संबंध में का व्युत्पन्न है.
चरण 1.1.2.3
को से गुणा करें.
चरण 1.1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.3.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.2.3
की सभी घटनाओं को से बदलें.
चरण 1.1.3.3
के संबंध में का व्युत्पन्न है.
चरण 1.1.3.4
को से गुणा करें.
चरण 1.1.3.5
को से गुणा करें.
चरण 1.1.4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.1
पदों को पुन: व्यवस्थित करें
चरण 1.1.4.2
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.2.1
में से का गुणनखंड करें.
चरण 1.1.4.2.2
में से का गुणनखंड करें.
चरण 1.1.4.2.3
में से का गुणनखंड करें.
चरण 1.1.4.3
और को पुन: क्रमित करें.
चरण 1.1.4.4
को के रूप में फिर से लिखें.
चरण 1.1.4.5
में से का गुणनखंड करें.
चरण 1.1.4.6
में से का गुणनखंड करें.
चरण 1.1.4.7
को के रूप में फिर से लिखें.
चरण 1.1.4.8
पाइथागोरस सर्वसमिका लागू करें.
चरण 1.1.4.9
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.9.1
ले जाएं.
चरण 1.1.4.9.2
को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.9.2.1
को के घात तक बढ़ाएं.
चरण 1.1.4.9.2.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.1.4.9.3
और जोड़ें.
चरण 1.1.4.10
को से गुणा करें.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.2.1.2
को से विभाजित करें.
चरण 2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
को से विभाजित करें.
चरण 2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 2.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
को के रूप में फिर से लिखें.
चरण 2.4.2
वास्तविक संख्या मानकर, करणी के अंतर्गत से पदों को बाहर निकालें.
चरण 2.5
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
चरण 2.6
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
का सटीक मान है.
चरण 2.7
पहले और दूसरे चतुर्थांश में ज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, दूसरे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
चरण 2.8
में से घटाएं.
चरण 2.9
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.9.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 2.9.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 2.9.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 2.9.4
को से विभाजित करें.
चरण 2.10
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
चरण 2.11
उत्तरों को समेकित करें.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
चरण 3
वे मान जो व्युत्पन्न को के बराबर बनाते हैं, वे हैं.
चरण 4
उस बिंदु को खोजने के बाद जो व्युत्पन्न को के बराबर या अपरिभाषित बनाता है, यह जांचने के लिए अंतराल कहां बढ़ रहा है और कहां घट रहा है है.
चरण 5
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
व्यंजक में चर को से बदलें.
चरण 5.2
अंतिम उत्तर है.
चरण 5.3
सरल करें.
चरण 5.4
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 6
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
अंतिम उत्तर है.
चरण 6.3
सरल करें.
चरण 6.4
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 7
उन अंतरालों की सूची बनाइए जिन पर फलन बढ़ रहा है और घट रहा है.
इस पर घटता हुआ:
चरण 8