समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
पहला व्युत्पन्न पता करें.
चरण 1.1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.1.2
के संबंध में का व्युत्पन्न है.
चरण 1.1.3
घात नियम का उपयोग करके अवकलन करें.
चरण 1.1.3.1
और को मिलाएं.
चरण 1.1.3.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.1.3.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.1.3.2.2
व्यंजक को फिर से लिखें.
चरण 1.1.3.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.4
को से गुणा करें.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.3
के लिए हल करने के लिए, लघुगणक के गुणों का उपयोग करके समीकरण को फिर से लिखें.
चरण 2.4
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 2.5
के लिए हल करें.
चरण 2.5.1
समीकरण को के रूप में फिर से लिखें.
चरण 2.5.2
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 3
वे मान जो व्युत्पन्न को के बराबर बनाते हैं, वे हैं.
चरण 4
चरण 4.1
यह पता लगाने के लिए कि व्यंजक कहाँ अपरिभाषित है, तर्क को से कम या उसके बराबर में सेट करें.
चरण 4.2
समीकरण अपरिभाषित है जहाँ भाजक के बराबर है, एक वर्गमूल का तर्क से कम है या एक लघुगणक का तर्क से कम या उसके बराबर है.
चरण 5
को मानों के आस-पास अलग-अलग अंतराल में विभाजित करें जो व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 6
उन अंतरालों को छोड़ दें जो डोमेन में नहीं हैं.
चरण 7
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
अंतिम उत्तर है.
चरण 7.3
सरल करें.
चरण 7.4
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 8
उन अंतरालों को छोड़ दें जो डोमेन में नहीं हैं.
चरण 9
चरण 9.1
व्यंजक में चर को से बदलें.
चरण 9.2
अंतिम उत्तर है.
चरण 9.3
सरल करें.
चरण 9.4
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 10
उन अंतरालों की सूची बनाइए जिन पर फलन बढ़ रहा है और घट रहा है.
बढ़ रहा है:
इस पर घटता हुआ:
चरण 11