कैलकुलस उदाहरण

अवकलजों का उपयोग करके पता लगाए कहाँ बढ़ /घट रहा है xe^(-x^2)
चरण 1
को एक फलन के रूप में लिखें.
चरण 2
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.1.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.1.2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.1.2.3
की सभी घटनाओं को से बदलें.
चरण 2.1.3
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.3.3
को से गुणा करें.
चरण 2.1.4
को के घात तक बढ़ाएं.
चरण 2.1.5
को के घात तक बढ़ाएं.
चरण 2.1.6
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.1.7
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1.7.1
और जोड़ें.
चरण 2.1.7.2
को के बाईं ओर ले जाएं.
चरण 2.1.8
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.9
को से गुणा करें.
चरण 2.1.10
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.10.1
पदों को पुन: व्यवस्थित करें
चरण 2.1.10.2
गुणनखंडों को में पुन: क्रमित करें.
चरण 2.2
का पहला व्युत्पन्न बटे , है.
चरण 3
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 3.2
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
में से का गुणनखंड करें.
चरण 3.2.2
से गुणा करें.
चरण 3.2.3
में से का गुणनखंड करें.
चरण 3.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 3.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
को के बराबर सेट करें.
चरण 3.4.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1
घातांक से चर को हटाने के लिए समीकरण के दोनों पक्षों का प्राकृतिक लघुगणक लें.
चरण 3.4.2.2
समीकरण हल नहीं किया जा सकता क्योंकि अपरिभाषित है.
अपरिभाषित
चरण 3.4.2.3
का कोई हल नहीं है
कोई हल नहीं
कोई हल नहीं
कोई हल नहीं
चरण 3.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1
को के बराबर सेट करें.
चरण 3.5.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.5.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.5.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.5.2.2.2.1.2
को से विभाजित करें.
चरण 3.5.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.2.3.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 3.5.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 3.5.2.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.4.1
को के रूप में फिर से लिखें.
चरण 3.5.2.4.2
का कोई भी मूल होता है.
चरण 3.5.2.4.3
को से गुणा करें.
चरण 3.5.2.4.4
भाजक को मिलाएं और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.4.4.1
को से गुणा करें.
चरण 3.5.2.4.4.2
को के घात तक बढ़ाएं.
चरण 3.5.2.4.4.3
को के घात तक बढ़ाएं.
चरण 3.5.2.4.4.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 3.5.2.4.4.5
और जोड़ें.
चरण 3.5.2.4.4.6
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.4.4.6.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 3.5.2.4.4.6.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.5.2.4.4.6.3
और को मिलाएं.
चरण 3.5.2.4.4.6.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.4.4.6.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.5.2.4.4.6.4.2
व्यंजक को फिर से लिखें.
चरण 3.5.2.4.4.6.5
घातांक का मान ज्ञात करें.
चरण 3.5.2.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.5.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.5.2.5.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.5.2.5.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 4
वे मान जो व्युत्पन्न को के बराबर बनाते हैं, वे हैं.
चरण 5
को मानों के आस-पास अलग-अलग अंतराल में विभाजित करें जो व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 6
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.1
को के घात तक बढ़ाएं.
चरण 6.2.1.2
को से गुणा करें.
चरण 6.2.1.3
को के घात तक बढ़ाएं.
चरण 6.2.1.4
को से गुणा करें.
चरण 6.2.1.5
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 6.2.1.6
और को मिलाएं.
चरण 6.2.1.7
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 6.2.1.8
को सन्निकटन से बदलें.
चरण 6.2.1.9
को के घात तक बढ़ाएं.
चरण 6.2.1.10
को से विभाजित करें.
चरण 6.2.1.11
को से गुणा करें.
चरण 6.2.1.12
को के घात तक बढ़ाएं.
चरण 6.2.1.13
को से गुणा करें.
चरण 6.2.1.14
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 6.2.2
और जोड़ें.
चरण 6.2.3
अंतिम उत्तर है.
चरण 6.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 7
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 7.2.1.2
को से गुणा करें.
चरण 7.2.1.3
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 7.2.1.4
को से गुणा करें.
चरण 7.2.1.5
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 7.2.1.6
को से गुणा करें.
चरण 7.2.1.7
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 7.2.1.8
को से गुणा करें.
चरण 7.2.1.9
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 7.2.2
और जोड़ें.
चरण 7.2.3
अंतिम उत्तर है.
चरण 7.3
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 8
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
व्यंजक में चर को से बदलें.
चरण 8.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1.1
को के घात तक बढ़ाएं.
चरण 8.2.1.2
को से गुणा करें.
चरण 8.2.1.3
को के घात तक बढ़ाएं.
चरण 8.2.1.4
को से गुणा करें.
चरण 8.2.1.5
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 8.2.1.6
और को मिलाएं.
चरण 8.2.1.7
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 8.2.1.8
को सन्निकटन से बदलें.
चरण 8.2.1.9
को के घात तक बढ़ाएं.
चरण 8.2.1.10
को से विभाजित करें.
चरण 8.2.1.11
को से गुणा करें.
चरण 8.2.1.12
को के घात तक बढ़ाएं.
चरण 8.2.1.13
को से गुणा करें.
चरण 8.2.1.14
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 8.2.2
और जोड़ें.
चरण 8.2.3
अंतिम उत्तर है.
चरण 8.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 9
उन अंतरालों की सूची बनाइए जिन पर फलन बढ़ रहा है और घट रहा है.
बढ़ रहा है:
इस पर घटता हुआ:
चरण 10