कैलकुलस उदाहरण

नति परिवर्तन बिन्दुओं का पता लगाएं f(x)=(2x-3)^5
चरण 1
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.1.3
की सभी घटनाओं को से बदलें.
चरण 1.1.2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.4
को से गुणा करें.
चरण 1.1.2.5
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.6
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.6.1
और जोड़ें.
चरण 1.1.2.6.2
को से गुणा करें.
चरण 1.2
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.2.3
की सभी घटनाओं को से बदलें.
चरण 1.2.3
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.1
को से गुणा करें.
चरण 1.2.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2.3.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3.5
को से गुणा करें.
चरण 1.2.3.6
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.3.7
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.7.1
और जोड़ें.
चरण 1.2.3.7.2
को से गुणा करें.
चरण 1.3
का दूसरा व्युत्पन्न बटे , है.
चरण 2
दूसरे व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
दूसरे व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.2.1.2
को से विभाजित करें.
चरण 2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
को से विभाजित करें.
चरण 2.3
को के बराबर सेट करें.
चरण 2.4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.4.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.4.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.4.2.2.1.2
को से विभाजित करें.
चरण 3
उन बिंदुओं को पता करें जहां दूसरा व्युत्पन्न है.
और स्टेप्स के लिए टैप करें…
चरण 3.1
का मान ज्ञात करने के लिए को में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
व्यंजक में चर को से बदलें.
चरण 3.1.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.1.2.1.2
व्यंजक को फिर से लिखें.
चरण 3.1.2.2
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.2.1
में से घटाएं.
चरण 3.1.2.2.2
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 3.1.2.3
अंतिम उत्तर है.
चरण 3.2
को में प्रतिस्थापित करने पर पता किया जाने वाला बिंदु है. यह बिंदु एक विभक्ति बिंदु हो सकता है.
चरण 4
को उन बिंदुओं के आसपास के अंतराल में विभाजित करें जो संभावित रूप से विभक्ति बिंदु हो सकते हैं.
चरण 5
यह निर्धारित करने के लिए कि यह बढ़ता या घटता है, अंतराल से एक मान को दूसरे व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
व्यंजक में चर को से बदलें.
चरण 5.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
को से गुणा करें.
चरण 5.2.2
में से घटाएं.
चरण 5.2.3
को के घात तक बढ़ाएं.
चरण 5.2.4
को से गुणा करें.
चरण 5.2.5
अंतिम उत्तर है.
चरण 5.3
पर, दूसरा व्युत्पन्न है. चूँकि यह ऋणात्मक है, इसलिए अंतराल पर दूसरा व्युत्पन्न घट रहा है
से पर घटता हुआ
से पर घटता हुआ
चरण 6
यह निर्धारित करने के लिए कि यह बढ़ता या घटता है, अंतराल से एक मान को दूसरे व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
को से गुणा करें.
चरण 6.2.2
में से घटाएं.
चरण 6.2.3
को के घात तक बढ़ाएं.
चरण 6.2.4
को से गुणा करें.
चरण 6.2.5
अंतिम उत्तर है.
चरण 6.3
पर, दूसरा व्युत्पन्न है. चूंकि यह धनात्मक है, इसलिए दूसरा अवकलज अंतराल पर बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 7
एक विभक्ति बिंदु एक वक्र पर एक बिंदु है, जिस पर अवतलता संकेत को जोड़ से घटाव या घटाव से जोड़ में बदल देती है. इस मामले में विभक्ति बिंदु है.
चरण 8