कैलकुलस उदाहरण

अवतलता ज्ञात कीजिये e^x
चरण 1
को एक फलन के रूप में लिखें.
चरण 2
Find the values where the second derivative is equal to .
और स्टेप्स के लिए टैप करें…
चरण 2.1
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.1.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.1.3
का दूसरा व्युत्पन्न बटे , है.
चरण 2.2
दूसरे व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
दूसरे व्युत्पन्न को के बराबर सेट करें.
चरण 2.2.2
घातांक से चर को हटाने के लिए समीकरण के दोनों पक्षों का प्राकृतिक लघुगणक लें.
चरण 2.2.3
समीकरण हल नहीं किया जा सकता क्योंकि अपरिभाषित है.
अपरिभाषित
चरण 2.2.4
का कोई हल नहीं है
कोई हल नहीं
कोई हल नहीं
कोई हल नहीं
चरण 3
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन:
चरण 4
ग्राफ अवतल ऊपर है क्योंकि दूसरा व्युत्पन्न धनात्मक है.
ग्राफ अवतल ऊपर है
चरण 5