समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
पहला व्युत्पन्न पता करें.
चरण 1.1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.1.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.1.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 1.1.2.3
की सभी घटनाओं को से बदलें.
चरण 1.1.3
अवकलन करें.
चरण 1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.3
व्यंजक को सरल बनाएंं.
चरण 1.1.3.3.1
को से गुणा करें.
चरण 1.1.3.3.2
को के बाईं ओर ले जाएं.
चरण 1.1.3.3.3
को के रूप में फिर से लिखें.
चरण 1.1.3.4
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.5
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.6
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.7
और जोड़ें.
चरण 1.1.4
सरल करें.
चरण 1.1.4.1
वितरण गुणधर्म लागू करें.
चरण 1.1.4.2
वितरण गुणधर्म लागू करें.
चरण 1.1.4.3
को से गुणा करें.
चरण 1.1.4.4
पदों को पुन: व्यवस्थित करें
चरण 1.1.4.5
गुणनखंडों को में पुन: क्रमित करें.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
समीकरण के बाएँ पक्ष का गुणनखंड करें.
चरण 2.2.1
में से का गुणनखंड करें.
चरण 2.2.1.1
में से का गुणनखंड करें.
चरण 2.2.1.2
में से का गुणनखंड करें.
चरण 2.2.1.3
में से का गुणनखंड करें.
चरण 2.2.1.4
में से का गुणनखंड करें.
चरण 2.2.1.5
में से का गुणनखंड करें.
चरण 2.2.2
गुणनखंड करें.
चरण 2.2.2.1
वर्गीकरण द्वारा गुणनखंड करें.
चरण 2.2.2.1.1
फॉर्म के बहुपद के लिए, मध्य पद को दो पदों के योग के रूप में फिर से लिखें, जिसका गुणनफल है और जिसका योग है.
चरण 2.2.2.1.1.1
में से का गुणनखंड करें.
चरण 2.2.2.1.1.2
को जोड़ के रूप में फिर से लिखें
चरण 2.2.2.1.1.3
वितरण गुणधर्म लागू करें.
चरण 2.2.2.1.2
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
चरण 2.2.2.1.2.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 2.2.2.1.2.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 2.2.2.1.3
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 2.2.2.2
अनावश्यक कोष्ठक हटा दें.
चरण 2.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.4
को के बराबर सेट करें और के लिए हल करें.
चरण 2.4.1
को के बराबर सेट करें.
चरण 2.4.2
के लिए हल करें.
चरण 2.4.2.1
घातांक से चर को हटाने के लिए समीकरण के दोनों पक्षों का प्राकृतिक लघुगणक लें.
चरण 2.4.2.2
समीकरण हल नहीं किया जा सकता क्योंकि अपरिभाषित है.
अपरिभाषित
चरण 2.4.2.3
का कोई हल नहीं है
कोई हल नहीं
कोई हल नहीं
कोई हल नहीं
चरण 2.5
को के बराबर सेट करें और के लिए हल करें.
चरण 2.5.1
को के बराबर सेट करें.
चरण 2.5.2
के लिए हल करें.
चरण 2.5.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.5.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 2.5.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.5.2.2.2
बाईं ओर को सरल बनाएंं.
चरण 2.5.2.2.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 2.5.2.2.2.2
को से विभाजित करें.
चरण 2.5.2.2.3
दाईं ओर को सरल बनाएंं.
चरण 2.5.2.2.3.1
को से विभाजित करें.
चरण 2.6
को के बराबर सेट करें और के लिए हल करें.
चरण 2.6.1
को के बराबर सेट करें.
चरण 2.6.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3
वे मान जो व्युत्पन्न को के बराबर बनाते हैं, वे हैं.
चरण 4
को मानों के आस-पास अलग-अलग अंतराल में विभाजित करें जो व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 5
चरण 5.1
व्यंजक में चर को से बदलें.
चरण 5.2
परिणाम को सरल बनाएंं.
चरण 5.2.1
प्रत्येक पद को सरल करें.
चरण 5.2.1.1
को के घात तक बढ़ाएं.
चरण 5.2.1.2
को से गुणा करें.
चरण 5.2.1.3
को से गुणा करें.
चरण 5.2.1.4
को से गुणा करें.
चरण 5.2.1.5
को से गुणा करें.
चरण 5.2.1.6
को से गुणा करें.
चरण 5.2.2
पदों को जोड़कर सरल करें.
चरण 5.2.2.1
में से घटाएं.
चरण 5.2.2.2
और जोड़ें.
चरण 5.2.3
अंतिम उत्तर है.
चरण 5.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 6
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
चरण 6.2.1
प्रत्येक पद को सरल करें.
चरण 6.2.1.1
एक का कोई भी घात एक होता है.
चरण 6.2.1.2
को से गुणा करें.
चरण 6.2.1.3
को से गुणा करें.
चरण 6.2.1.4
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 6.2.1.5
को के रूप में फिर से लिखें.
चरण 6.2.1.6
को से गुणा करें.
चरण 6.2.1.7
को से गुणा करें.
चरण 6.2.1.8
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 6.2.1.9
और को मिलाएं.
चरण 6.2.1.10
को से गुणा करें.
चरण 6.2.1.11
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 6.2.1.12
और को मिलाएं.
चरण 6.2.2
न्यूमेरेटरों को जोड़ें.
चरण 6.2.2.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 6.2.2.2
संख्याओं को जोड़कर सरल करें.
चरण 6.2.2.2.1
और जोड़ें.
चरण 6.2.2.2.2
और जोड़ें.
चरण 6.2.3
अंतिम उत्तर है.
चरण 6.3
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 7
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
चरण 7.2.1
प्रत्येक पद को सरल करें.
चरण 7.2.1.1
को के घात तक बढ़ाएं.
चरण 7.2.1.2
को से गुणा करें.
चरण 7.2.1.3
को से गुणा करें.
चरण 7.2.1.4
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 7.2.1.5
और को मिलाएं.
चरण 7.2.1.6
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 7.2.1.7
को से गुणा करें.
चरण 7.2.1.8
को से गुणा करें.
चरण 7.2.1.9
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 7.2.1.10
और को मिलाएं.
चरण 7.2.1.11
को से गुणा करें.
चरण 7.2.1.12
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 7.2.1.13
और को मिलाएं.
चरण 7.2.2
न्यूमेरेटरों को जोड़ें.
चरण 7.2.2.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 7.2.2.2
व्यंजक को सरल बनाएंं.
चरण 7.2.2.2.1
और जोड़ें.
चरण 7.2.2.2.2
और जोड़ें.
चरण 7.2.2.2.3
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 7.2.3
अंतिम उत्तर है.
चरण 7.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 8
उन अंतरालों की सूची बनाइए जिन पर फलन बढ़ रहा है और घट रहा है.
बढ़ रहा है:
इस पर घटता हुआ:
चरण 9