कैलकुलस उदाहरण

व्युत्क्रम ज्ञात कीजिये x^2 का घन मूल
चरण 1
चर को एकदूसरे के साथ बदलें.
चरण 2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
समीकरण को के रूप में फिर से लिखें.
चरण 2.2
समीकरण के बाईं पक्ष की ओर मूलांक निकालने के लिए, समीकरण के दोनों पक्षों को घन करें.
चरण 2.3
समीकरण के प्रत्येक पक्ष को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 2.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.3.2.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.2.1.2.2
व्यंजक को फिर से लिखें.
चरण 2.4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 2.4.2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1
का गुणनखंड करें.
चरण 2.4.2.2
करणी से पदों को बाहर निकालें.
चरण 2.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 2.4.3.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 2.4.3.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 2.4.3.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3
Replace with to show the final answer.
चरण 4
सत्यापित करें कि क्या , का व्युत्क्रम है.
और स्टेप्स के लिए टैप करें…
चरण 4.1
व्युत्क्रम का डोमेन मूल फंक्शन का परास और इसके विपरीत है. और का डोमेन और परास ज्ञात करें और उनकी तुलना करें.
चरण 4.2
की सीमा ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
श्रेणी सभी मान्य मानों का सेट है. परिसर पता करने के लिए ग्राफ का प्रयोग करें.
मध्यवर्ती संकेतन:
चरण 4.3
का डोमेन ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
रेडिकैंड को में से बड़ा या उसके बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां परिभाषित किया गया है.
चरण 4.3.2
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
चरण 4.4
का डोमेन ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.4.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 4.5
चूँकि का डोमेन का परास है और का डोमेन का डोमेन है, तो , का व्युत्क्रम है.
चरण 5