कैलकुलस उदाहरण

अवकलजों का उपयोग करके पता लगाए कहाँ बढ़ /घट रहा है f(x)=x^2e^(-x)
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.1.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 1.1.2.3
की सभी घटनाओं को से बदलें.
चरण 1.1.3
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.3
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.3.1
को से गुणा करें.
चरण 1.1.3.3.2
को के बाईं ओर ले जाएं.
चरण 1.1.3.3.3
को के रूप में फिर से लिखें.
चरण 1.1.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.1
पदों को पुन: व्यवस्थित करें
चरण 1.1.4.2
गुणनखंडों को में पुन: क्रमित करें.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
में से का गुणनखंड करें.
चरण 2.2.2
में से का गुणनखंड करें.
चरण 2.2.3
में से का गुणनखंड करें.
चरण 2.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.4
को के बराबर सेट करें.
चरण 2.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
को के बराबर सेट करें.
चरण 2.5.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.1
घातांक से चर को हटाने के लिए समीकरण के दोनों पक्षों का प्राकृतिक लघुगणक लें.
चरण 2.5.2.2
समीकरण हल नहीं किया जा सकता क्योंकि अपरिभाषित है.
अपरिभाषित
चरण 2.5.2.3
का कोई हल नहीं है
कोई हल नहीं
कोई हल नहीं
कोई हल नहीं
चरण 2.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
को के बराबर सेट करें.
चरण 2.6.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.6.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.6.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.2.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 2.6.2.2.2.2
को से विभाजित करें.
चरण 2.6.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.2.3.1
को से विभाजित करें.
चरण 2.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3
वे मान जो व्युत्पन्न को के बराबर बनाते हैं, वे हैं.
चरण 4
को मानों के आस-पास अलग-अलग अंतराल में विभाजित करें जो व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 5
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
व्यंजक में चर को से बदलें.
चरण 5.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1.1
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1.1.1
को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1.1.1.1
को के घात तक बढ़ाएं.
चरण 5.2.1.1.1.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 5.2.1.1.2
और जोड़ें.
चरण 5.2.1.2
को के घात तक बढ़ाएं.
चरण 5.2.1.3
को से गुणा करें.
चरण 5.2.1.4
सरल करें.
चरण 5.2.1.5
को के रूप में फिर से लिखें.
चरण 5.2.1.6
को से गुणा करें.
चरण 5.2.1.7
को से गुणा करें.
चरण 5.2.2
में से घटाएं.
चरण 5.2.3
अंतिम उत्तर है.
चरण 5.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 6
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.1
एक का कोई भी घात एक होता है.
चरण 6.2.1.2
को से गुणा करें.
चरण 6.2.1.3
को से गुणा करें.
चरण 6.2.1.4
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 6.2.1.5
को के रूप में फिर से लिखें.
चरण 6.2.1.6
को से गुणा करें.
चरण 6.2.1.7
को से गुणा करें.
चरण 6.2.1.8
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 6.2.1.9
और को मिलाएं.
चरण 6.2.2
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.2.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 6.2.2.2
और जोड़ें.
चरण 6.2.3
अंतिम उत्तर है.
चरण 6.3
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 7
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1.1
को के घात तक बढ़ाएं.
चरण 7.2.1.2
को से गुणा करें.
चरण 7.2.1.3
को से गुणा करें.
चरण 7.2.1.4
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 7.2.1.5
और को मिलाएं.
चरण 7.2.1.6
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 7.2.1.7
को से गुणा करें.
चरण 7.2.1.8
को से गुणा करें.
चरण 7.2.1.9
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 7.2.1.10
और को मिलाएं.
चरण 7.2.2
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.2.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 7.2.2.2
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.2.2.1
और जोड़ें.
चरण 7.2.2.2.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 7.2.3
अंतिम उत्तर है.
चरण 7.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 8
उन अंतरालों की सूची बनाइए जिन पर फलन बढ़ रहा है और घट रहा है.
बढ़ रहा है:
इस पर घटता हुआ:
चरण 9