कैलकुलस उदाहरण

L'Hospital के नियम का प्रयोग करके मान निकालिये। cos(x)) के प्राकृतिक लघुगणक (sin(x^2))/( का लिमिट जब x 0 की ओर एप्रोच कर रहा हो
चरण 1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1.1
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 1.2.1.2
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 1.2.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.2.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 1.2.3.2
का सटीक मान है.
चरण 1.3
भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1.1
लघुगणक के अंदर की सीमा को स्थानांतरित करें.
चरण 1.3.1.2
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 1.3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.3.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.3.1
का सटीक मान है.
चरण 1.3.3.2
का प्राकृतिक लघुगणक है.
चरण 1.3.3.3
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 3.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.2.2
के संबंध में का व्युत्पन्न है.
चरण 3.2.3
की सभी घटनाओं को से बदलें.
चरण 3.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.4
के गुणनखंडों को फिर से क्रमित करें.
चरण 3.5
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.5.2
के संबंध में का व्युत्पन्न है.
चरण 3.5.3
की सभी घटनाओं को से बदलें.
चरण 3.6
के संबंध में का व्युत्पन्न है.
चरण 3.7
और को मिलाएं.
चरण 4
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 5
गुणनखंडों को जोड़े.
और स्टेप्स के लिए टैप करें…
चरण 5.1
को से गुणा करें.
चरण 5.2
और को मिलाएं.
चरण 5.3
और को मिलाएं.
चरण 5.4
और को मिलाएं.
चरण 6
को में बदलें.
चरण 7
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 8
बाईं ओर की सीमा पर विचार करें.
चरण 9
फलन के व्यवहार को दिखाने के लिए एक तालिका बनाएंं क्योंकि बाईं ओर से की ओर आ रहा है.
चरण 10
का मान की ओर एप्रोच करती हैं, फलन मान की ओर एप्रोच करती हैं. इस प्रकार, का लिमिट के रूप में के बाईं ओर से ओर एप्रोच करती है है.
चरण 11
दाईं ओर की सीमा पर विचार करें.
चरण 12
फलन के व्यवहार को दिखाने के लिए एक तालिका बनाएंं क्योंकि दाईं ओर से की ओर आ रहा है.
चरण 13
का मान की ओर एप्रोच करती हैं, फलन मान की ओर एप्रोच करती हैं. इस प्रकार, का लिमिट के रूप में के दाईं ओर से ओर एप्रोच करती है है.
चरण 14
को से गुणा करें.