कैलकुलस उदाहरण

L'Hospital के नियम का प्रयोग करके मान निकालिये। (e^(2x)+x^2)/(e^x+4x) का लिमिट, जब x infinity की ओर एप्रोच करता हो
चरण 1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.2.2
चूँकि घातांक की ओर एप्रोच करता है, इसलिए मान की ओर एप्रोच करता है.
चरण 1.2.3
एक बहुपद की अनंत की सीमा जिसका प्रमुख गुणांक धनात्मक है, अनंत है.
चरण 1.2.4
अनंत जोड़ अनंत परिणाम अनंत होता है.
चरण 1.3
भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.3.2
चूँकि घातांक की ओर एप्रोच करता है, इसलिए मान की ओर एप्रोच करता है.
चरण 1.3.3
एक बहुपद की अनंत की सीमा जिसका प्रमुख गुणांक धनात्मक है, अनंत है.
चरण 1.3.4
अनंत जोड़ अनंत परिणाम अनंत होता है.
चरण 1.3.5
अनंत से विभाजित अनंत परिणाम अपरिभाषित होता है.
अपरिभाषित
चरण 1.4
अनंत से विभाजित अनंत परिणाम अपरिभाषित होता है.
अपरिभाषित
चरण 2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.3.1.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 3.3.1.3
की सभी घटनाओं को से बदलें.
चरण 3.3.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.3.4
को से गुणा करें.
चरण 3.3.5
को के बाईं ओर ले जाएं.
चरण 3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.5
पदों को पुन: व्यवस्थित करें
चरण 3.6
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.7
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 3.8
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.8.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.8.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.8.3
को से गुणा करें.
चरण 4
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 4.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 4.1.2.1.2
एक बहुपद की अनंत की सीमा जिसका प्रमुख गुणांक धनात्मक है, अनंत है.
चरण 4.1.2.2
चूँकि फलन की ओर एप्रोच करता है, इसलिए फलन का धनात्मक स्थिरांक गुना भी की ओर एप्रोच करता है.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.2.1
सतत एकाधिक हटाई गई लिमिट पर विचार करें.
चरण 4.1.2.2.2
चूँकि घातांक की ओर एप्रोच करता है, इसलिए मान की ओर एप्रोच करता है.
चरण 4.1.2.3
अनंत जोड़ अनंत परिणाम अनंत होता है.
चरण 4.1.3
भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.3.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 4.1.3.2
चूँकि घातांक की ओर एप्रोच करता है, इसलिए मान की ओर एप्रोच करता है.
चरण 4.1.3.3
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 4.1.3.4
अनंत में कोई संख्या से जोड़ या घटाव करने पर परिणाम एक संख्या अनंत होती है.
चरण 4.1.3.5
अनंत से विभाजित अनंत परिणाम अपरिभाषित होता है.
अपरिभाषित
चरण 4.1.4
अनंत से विभाजित अनंत परिणाम अपरिभाषित होता है.
अपरिभाषित
चरण 4.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 4.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 4.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.3.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.3.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.3.3.3
को से गुणा करें.
चरण 4.3.4
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.3.4.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 4.3.4.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 4.3.4.2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 4.3.4.2.3
की सभी घटनाओं को से बदलें.
चरण 4.3.4.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.3.4.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.3.4.5
को से गुणा करें.
चरण 4.3.4.6
को के बाईं ओर ले जाएं.
चरण 4.3.4.7
को से गुणा करें.
चरण 4.3.5
पदों को पुन: व्यवस्थित करें
चरण 4.3.6
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.3.7
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 4.3.8
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.3.9
और जोड़ें.
चरण 5
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 5.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.2.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 5.1.2.2
चूँकि फलन की ओर एप्रोच करता है, इसलिए फलन का धनात्मक स्थिरांक गुना भी की ओर एप्रोच करता है.
और स्टेप्स के लिए टैप करें…
चरण 5.1.2.2.1
सतत एकाधिक हटाई गई लिमिट पर विचार करें.
चरण 5.1.2.2.2
चूँकि घातांक की ओर एप्रोच करता है, इसलिए मान की ओर एप्रोच करता है.
चरण 5.1.2.3
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 5.1.2.4
अनंत में कोई संख्या से जोड़ या घटाव करने पर परिणाम एक संख्या अनंत होती है.
चरण 5.1.3
चूँकि घातांक की ओर एप्रोच करता है, इसलिए मान की ओर एप्रोच करता है.
चरण 5.1.4
अनंत से विभाजित अनंत परिणाम अपरिभाषित होता है.
अपरिभाषित
चरण 5.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 5.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 5.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 5.3.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 5.3.3.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 5.3.3.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 5.3.3.2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 5.3.3.2.3
की सभी घटनाओं को से बदलें.
चरण 5.3.3.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 5.3.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 5.3.3.5
को से गुणा करें.
चरण 5.3.3.6
को के बाईं ओर ले जाएं.
चरण 5.3.3.7
को से गुणा करें.
चरण 5.3.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 5.3.5
और जोड़ें.
चरण 5.3.6
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 5.4
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.1
में से का गुणनखंड करें.
चरण 5.4.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.2.1
से गुणा करें.
चरण 5.4.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.4.2.3
व्यंजक को फिर से लिखें.
चरण 5.4.2.4
को से विभाजित करें.
चरण 6
चूँकि फलन की ओर एप्रोच करता है, इसलिए फलन का धनात्मक स्थिरांक गुना भी की ओर एप्रोच करता है.
और स्टेप्स के लिए टैप करें…
चरण 6.1
सतत एकाधिक हटाई गई लिमिट पर विचार करें.
चरण 6.2
चूँकि घातांक की ओर एप्रोच करता है, इसलिए मान की ओर एप्रोच करता है.