समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
चरण 1.2.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.2.2
चूँकि फलन की ओर एप्रोच करता है, इसलिए फलन का धनात्मक स्थिरांक गुना भी की ओर एप्रोच करता है.
चरण 1.2.2.1
सतत एकाधिक हटाई गई लिमिट पर विचार करें.
चरण 1.2.2.2
चूँकि घातांक की ओर एप्रोच करता है, इसलिए मान की ओर एप्रोच करता है.
चरण 1.2.3
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 1.2.4
चूँकि घातांक की ओर एप्रोच करता है, इसलिए मान की ओर एप्रोच करता है.
चरण 1.2.5
उत्तर को सरल करें.
चरण 1.2.5.1
को से गुणा करें.
चरण 1.2.5.2
और जोड़ें.
चरण 1.3
भाजक की सीमा का मान ज्ञात करें.
चरण 1.3.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.3.2
चूँकि फलन की ओर एप्रोच करता है, इसलिए फलन का धनात्मक स्थिरांक गुना भी की ओर एप्रोच करता है.
चरण 1.3.2.1
सतत एकाधिक हटाई गई लिमिट पर विचार करें.
चरण 1.3.2.2
चूँकि घातांक की ओर एप्रोच करता है, इसलिए मान की ओर एप्रोच करता है.
चरण 1.3.3
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.3.4
अनंत में कोई संख्या से जोड़ या घटाव करने पर परिणाम एक संख्या अनंत होती है.
चरण 1.3.5
अनंत से विभाजित अनंत परिणाम अपरिभाषित होता है.
अपरिभाषित
चरण 1.4
अनंत से विभाजित अनंत परिणाम अपरिभाषित होता है.
अपरिभाषित
चरण 2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 3
चरण 3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.3
का मान ज्ञात करें.
चरण 3.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 3.4
का मान ज्ञात करें.
चरण 3.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.4.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 3.4.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.4.2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 3.4.2.3
की सभी घटनाओं को से बदलें.
चरण 3.4.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.4.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.4.5
को से गुणा करें.
चरण 3.4.6
को के बाईं ओर ले जाएं.
चरण 3.4.7
को के रूप में फिर से लिखें.
चरण 3.4.8
को से गुणा करें.
चरण 3.5
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.6
का मान ज्ञात करें.
चरण 3.6.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.6.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 3.7
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.8
और जोड़ें.