कैलकुलस उदाहरण

Second次導関数を求める f(x)=1+x+1/6x^2+1/12x^3+1/16x^4+1/80x^5
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3
और को मिलाएं.
चरण 1.2.4
और को मिलाएं.
चरण 1.2.5
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.5.1
में से का गुणनखंड करें.
चरण 1.2.5.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.5.2.1
में से का गुणनखंड करें.
चरण 1.2.5.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.5.2.3
व्यंजक को फिर से लिखें.
चरण 1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3
और को मिलाएं.
चरण 1.3.4
और को मिलाएं.
चरण 1.3.5
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.5.1
में से का गुणनखंड करें.
चरण 1.3.5.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.5.2.1
में से का गुणनखंड करें.
चरण 1.3.5.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.3.5.2.3
व्यंजक को फिर से लिखें.
चरण 1.4
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.4.3
और को मिलाएं.
चरण 1.4.4
और को मिलाएं.
चरण 1.4.5
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.5.1
में से का गुणनखंड करें.
चरण 1.4.5.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.5.2.1
में से का गुणनखंड करें.
चरण 1.4.5.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.4.5.2.3
व्यंजक को फिर से लिखें.
चरण 1.5
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.5.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.5.3
और को मिलाएं.
चरण 1.5.4
और को मिलाएं.
चरण 1.5.5
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.5.1
में से का गुणनखंड करें.
चरण 1.5.5.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.5.2.1
में से का गुणनखंड करें.
चरण 1.5.5.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.5.5.2.3
व्यंजक को फिर से लिखें.
चरण 1.6
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.6.1
और जोड़ें.
चरण 1.6.2
पदों को पुन: व्यवस्थित करें
चरण 2
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.3
और को मिलाएं.
चरण 2.2.4
और को मिलाएं.
चरण 2.2.5
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.5.1
में से का गुणनखंड करें.
चरण 2.2.5.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.5.2.1
में से का गुणनखंड करें.
चरण 2.2.5.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.5.2.3
व्यंजक को फिर से लिखें.
चरण 2.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.3
और को मिलाएं.
चरण 2.3.4
और को मिलाएं.
चरण 2.4
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.4.3
और को मिलाएं.
चरण 2.4.4
और को मिलाएं.
चरण 2.4.5
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.5.1
में से का गुणनखंड करें.
चरण 2.4.5.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.5.2.1
में से का गुणनखंड करें.
चरण 2.4.5.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.4.5.2.3
व्यंजक को फिर से लिखें.
चरण 2.5
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.5.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.5.3
को से गुणा करें.
चरण 2.6
स्थिरांक नियम का उपयोग करके अंतर करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.6.2
और जोड़ें.
चरण 3
का दूसरा व्युत्पन्न बटे , है.