कैलकुलस उदाहरण

Third次導関数を求める f(x) = cube root of 2x+3x
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पदों को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
और जोड़ें.
चरण 1.1.2
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 1.1.3
में से का गुणनखंड करें.
चरण 1.1.4
उत्पाद नियम को पर लागू करें.
चरण 1.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.4
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.5
और को मिलाएं.
चरण 1.6
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.7
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.7.1
को से गुणा करें.
चरण 1.7.2
में से घटाएं.
चरण 1.8
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.9
और को मिलाएं.
चरण 1.10
और को मिलाएं.
चरण 1.11
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 2
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2
घातांक के बुनियादी नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
को के रूप में फिर से लिखें.
चरण 2.2.2
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.2.2.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.2.1
और को मिलाएं.
चरण 2.2.2.2.2
को से गुणा करें.
चरण 2.2.2.3
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.4
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 2.5
और को मिलाएं.
चरण 2.6
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 2.7
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.7.1
को से गुणा करें.
चरण 2.7.2
में से घटाएं.
चरण 2.8
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.9
और को मिलाएं.
चरण 2.10
को से गुणा करें.
चरण 2.11
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.11.1
को से गुणा करें.
चरण 2.11.2
को के बाईं ओर ले जाएं.
चरण 2.11.3
को के बाईं ओर ले जाएं.
चरण 2.11.4
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 3
व्युत्पन्न ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.2
घातांक के बुनियादी नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
को के रूप में फिर से लिखें.
चरण 3.2.2
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.2.2.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.2.1
और को मिलाएं.
चरण 3.2.2.2.2
को से गुणा करें.
चरण 3.2.2.3
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.4
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 3.5
और को मिलाएं.
चरण 3.6
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 3.7
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.7.1
को से गुणा करें.
चरण 3.7.2
में से घटाएं.
चरण 3.8
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3.9
और को मिलाएं.
चरण 3.10
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.10.1
को से गुणा करें.
चरण 3.10.2
को से गुणा करें.
चरण 3.11
को से गुणा करें.
चरण 3.12
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.12.1
को से गुणा करें.
चरण 3.12.2
को से गुणा करें.
चरण 3.12.3
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 4
का तीसरा व्युत्पन्न बटे , है.