समस्या दर्ज करें...
कैलकुलस उदाहरण
;
चरण 1
चरण 1.1
पहला व्युत्पन्न पता करें.
चरण 1.1.1
पहला व्युत्पन्न पता करें.
चरण 1.1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.2
का मान ज्ञात करें.
चरण 1.1.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.1.2.3
को से गुणा करें.
चरण 1.1.1.3
का मान ज्ञात करें.
चरण 1.1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.1.3.3
को से गुणा करें.
चरण 1.1.1.4
पदों को पुन: व्यवस्थित करें
चरण 1.1.2
का पहला व्युत्पन्न बटे , है.
चरण 1.2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
चरण 1.2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 1.2.2
में से का गुणनखंड करें.
चरण 1.2.2.1
में से का गुणनखंड करें.
चरण 1.2.2.2
में से का गुणनखंड करें.
चरण 1.2.2.3
में से का गुणनखंड करें.
चरण 1.2.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 1.2.4
को के बराबर सेट करें और के लिए हल करें.
चरण 1.2.4.1
को के बराबर सेट करें.
चरण 1.2.4.2
के लिए हल करें.
चरण 1.2.4.2.1
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 1.2.4.2.2
को सरल करें.
चरण 1.2.4.2.2.1
को के रूप में फिर से लिखें.
चरण 1.2.4.2.2.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 1.2.4.2.2.3
जोड़ या घटाव , है.
चरण 1.2.5
को के बराबर सेट करें और के लिए हल करें.
चरण 1.2.5.1
को के बराबर सेट करें.
चरण 1.2.5.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 1.2.6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 1.3
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
चरण 1.3.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 1.4
प्रत्येक मान पर का मूल्यांकन करें जहां व्युत्पन्न या अपरिभाषित है.
चरण 1.4.1
पर मान ज्ञात करें.
चरण 1.4.1.1
को से प्रतिस्थापित करें.
चरण 1.4.1.2
सरल करें.
चरण 1.4.1.2.1
प्रत्येक पद को सरल करें.
चरण 1.4.1.2.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 1.4.1.2.1.2
को से गुणा करें.
चरण 1.4.1.2.1.3
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 1.4.1.2.1.4
को से गुणा करें.
चरण 1.4.1.2.2
और जोड़ें.
चरण 1.4.2
पर मान ज्ञात करें.
चरण 1.4.2.1
को से प्रतिस्थापित करें.
चरण 1.4.2.2
सरल करें.
चरण 1.4.2.2.1
प्रत्येक पद को सरल करें.
चरण 1.4.2.2.1.1
एक का कोई भी घात एक होता है.
चरण 1.4.2.2.1.2
को से गुणा करें.
चरण 1.4.2.2.1.3
एक का कोई भी घात एक होता है.
चरण 1.4.2.2.1.4
को से गुणा करें.
चरण 1.4.2.2.2
में से घटाएं.
चरण 1.4.3
सभी बिंदुओं को सूचीबद्ध करें.
चरण 2
चरण 2.1
को मानों के लगभग अलग-अलग अंतराल में विभाजित करें जो पहले व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 2.2
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
चरण 2.2.1
व्यंजक में चर को से बदलें.
चरण 2.2.2
परिणाम को सरल बनाएंं.
चरण 2.2.2.1
प्रत्येक पद को सरल करें.
चरण 2.2.2.1.1
को के घात तक बढ़ाएं.
चरण 2.2.2.1.2
को से गुणा करें.
चरण 2.2.2.1.3
को के घात तक बढ़ाएं.
चरण 2.2.2.1.4
को से गुणा करें.
चरण 2.2.2.2
और जोड़ें.
चरण 2.2.2.3
अंतिम उत्तर है.
चरण 2.3
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
चरण 2.3.1
व्यंजक में चर को से बदलें.
चरण 2.3.2
परिणाम को सरल बनाएंं.
चरण 2.3.2.1
प्रत्येक पद को सरल करें.
चरण 2.3.2.1.1
को के घात तक बढ़ाएं.
चरण 2.3.2.1.2
को से गुणा करें.
चरण 2.3.2.1.3
को के घात तक बढ़ाएं.
चरण 2.3.2.1.4
को से गुणा करें.
चरण 2.3.2.2
और जोड़ें.
चरण 2.3.2.3
अंतिम उत्तर है.
चरण 2.4
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
चरण 2.4.1
व्यंजक में चर को से बदलें.
चरण 2.4.2
परिणाम को सरल बनाएंं.
चरण 2.4.2.1
प्रत्येक पद को सरल करें.
चरण 2.4.2.1.1
को के घात तक बढ़ाएं.
चरण 2.4.2.1.2
को से गुणा करें.
चरण 2.4.2.1.3
को के घात तक बढ़ाएं.
चरण 2.4.2.1.4
को से गुणा करें.
चरण 2.4.2.2
और जोड़ें.
चरण 2.4.2.3
अंतिम उत्तर है.
चरण 2.5
चूँकि पहले व्युत्पन्न ने के आसपास के संकेतों को नहीं बदला, यह स्थानीय अधिकतम या न्यूनतम नहीं है.
स्थानीय अधिकतम या न्यूनतम नहीं
चरण 2.6
चूँकि पहले व्युत्पन्न ने संकेतों को धनात्मक से ऋणात्मक में के लगभग बदल दिया, तो एक स्थानीय अधिकतम है.
एक स्थानीय अधिकतम है.
एक स्थानीय अधिकतम है.
चरण 3
दिए गए अंतराल में पूर्ण अधिकतम और न्यूनतम निर्धारित करने के लिए के प्रत्येक मान के लिए पाए गए मानों की तुलना करें. अधिकतम उच्चतम मान पर होगा और न्यूनतम न्यूनतम मान पर होगा.
निरपेक्ष उचिष्ठ:
कोई निरपेक्ष न्यूनतम नहीं
चरण 4