कैलकुलस उदाहरण

विशेष बिन्दु ज्ञात कीजिये x^(5/2)-6x^2
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.1.2.3
और को मिलाएं.
चरण 1.1.2.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.1.2.5
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.5.1
को से गुणा करें.
चरण 1.1.2.5.2
में से घटाएं.
चरण 1.1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.3
को से गुणा करें.
चरण 1.1.4
और को मिलाएं.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
के प्रत्येक पद को से गुणा करें.
चरण 2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.2.1.1.2
व्यंजक को फिर से लिखें.
चरण 2.2.2.1.2
को से गुणा करें.
चरण 2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
को से गुणा करें.
चरण 2.3
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
में से का गुणनखंड करें.
चरण 2.3.2
में से का गुणनखंड करें.
चरण 2.3.3
में से का गुणनखंड करें.
चरण 2.4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.5
को के बराबर सेट करें.
चरण 2.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
को के बराबर सेट करें.
चरण 2.6.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.6.2.2
बाईं ओर के भिन्नात्मक घातांक को समाप्त करने के लिए समीकरण के प्रत्येक पक्ष को की घात तक बढ़ाएँ.
चरण 2.6.2.3
घातांक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.3.1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.3.1.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.3.1.1.1
उत्पाद नियम को पर लागू करें.
चरण 2.6.2.3.1.1.2
को के घात तक बढ़ाएं.
चरण 2.6.2.3.1.1.3
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.3.1.1.3.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.6.2.3.1.1.3.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.3.1.1.3.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.6.2.3.1.1.3.2.2
व्यंजक को फिर से लिखें.
चरण 2.6.2.3.1.1.4
सरल करें.
चरण 2.6.2.3.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.3.2.1
को के घात तक बढ़ाएं.
चरण 2.6.2.4
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.4.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.6.2.4.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.4.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.6.2.4.2.1.2
को से विभाजित करें.
चरण 2.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 3.1
घातांक को मूलक के रूप में फिर से लिखने के लिए नियम लागू करें.
चरण 3.2
रेडिकैंड को में से कम में सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 3.3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
बाईं ओर के घातांक को समाप्त करने के लिए असमिका के दोनों पक्षों का निर्दिष्ट मूल लें.
चरण 3.3.2
समीकरण को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1.1
करणी से पदों को बाहर निकालें.
चरण 3.3.2.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.2.1.1
को के रूप में फिर से लिखें.
चरण 3.3.2.2.1.2
करणी से पदों को बाहर निकालें.
चरण 3.4
समीकरण अपरिभाषित है जहाँ भाजक के बराबर है, एक वर्गमूल का तर्क से कम है या एक लघुगणक का तर्क से कम या उसके बराबर है.
चरण 4
प्रत्येक मान पर का मूल्यांकन करें जहां व्युत्पन्न या अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
को से प्रतिस्थापित करें.
चरण 4.1.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1.1
को के रूप में फिर से लिखें.
चरण 4.1.2.1.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 4.1.2.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.1.2.1.3.2
व्यंजक को फिर से लिखें.
चरण 4.1.2.1.4
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 4.1.2.1.5
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 4.1.2.1.6
को से गुणा करें.
चरण 4.1.2.2
और जोड़ें.
चरण 4.2
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
को से प्रतिस्थापित करें.
चरण 4.2.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.1
उत्पाद नियम को पर लागू करें.
चरण 4.2.2.1.2
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.2.1
को के रूप में फिर से लिखें.
चरण 4.2.2.1.2.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 4.2.2.1.2.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.2.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.2.1.2.3.2
व्यंजक को फिर से लिखें.
चरण 4.2.2.1.2.4
को के घात तक बढ़ाएं.
चरण 4.2.2.1.3
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.3.1
को के रूप में फिर से लिखें.
चरण 4.2.2.1.3.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 4.2.2.1.3.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.3.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.2.1.3.3.2
व्यंजक को फिर से लिखें.
चरण 4.2.2.1.3.4
को के घात तक बढ़ाएं.
चरण 4.2.2.1.4
उत्पाद नियम को पर लागू करें.
चरण 4.2.2.1.5
को के घात तक बढ़ाएं.
चरण 4.2.2.1.6
को के घात तक बढ़ाएं.
चरण 4.2.2.1.7
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.7.1
और को मिलाएं.
चरण 4.2.2.1.7.2
को से गुणा करें.
चरण 4.2.2.1.8
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4.2.2.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 4.2.2.3
प्रत्येक व्यंजक को के सामान्य भाजक के साथ लिखें, प्रत्येक को के उपयुक्त गुणनखंड से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.3.1
को से गुणा करें.
चरण 4.2.2.3.2
को से गुणा करें.
चरण 4.2.2.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 4.2.2.5
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.5.1
को से गुणा करें.
चरण 4.2.2.5.2
में से घटाएं.
चरण 4.2.2.6
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4.3
सभी बिंदुओं को सूचीबद्ध करें.
चरण 5