कैलकुलस उदाहरण

L'Hospital के नियम का प्रयोग करके मान निकालिये। x-sin(pix)) के प्राकृतिक लघुगणक (x-1)/( का लिमिट जब x 1 की ओर एप्रोच कर रहा हो
चरण 1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.2.1.2
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.2.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.2.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.1
को से गुणा करें.
चरण 1.2.3.2
में से घटाएं.
चरण 1.3
भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.3.2
लघुगणक के अंदर की सीमा को स्थानांतरित करें.
चरण 1.3.3
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 1.3.4
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 1.3.5
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.5.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.3.5.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.3.6
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.6.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.6.1.1
का प्राकृतिक लघुगणक है.
चरण 1.3.6.1.2
को से गुणा करें.
चरण 1.3.6.1.3
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें.
चरण 1.3.6.1.4
का सटीक मान है.
चरण 1.3.6.1.5
को से गुणा करें.
चरण 1.3.6.2
और जोड़ें.
चरण 1.3.6.3
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.3.7
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.5
और जोड़ें.
चरण 3.6
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.7
के संबंध में का व्युत्पन्न है.
चरण 3.8
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.8.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.8.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 3.8.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.8.2.2
के संबंध में का व्युत्पन्न है.
चरण 3.8.2.3
की सभी घटनाओं को से बदलें.
चरण 3.8.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.8.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.8.5
को से गुणा करें.
चरण 3.8.6
कोष्ठक हटा दें.
चरण 3.9
पदों को पुन: व्यवस्थित करें
चरण 4
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 5
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 6
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 7
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 8
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 9
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 10
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 11
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 12
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 12.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 12.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 13
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 13.1.2
व्यंजक को फिर से लिखें.
चरण 13.2
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 13.2.1
को से गुणा करें.
चरण 13.2.2
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक बनाएंं क्योंकि दूसरे चतुर्थांश में कोज्या ऋणात्मक है.
चरण 13.2.3
का सटीक मान है.
चरण 13.2.4
को से गुणा करें.
चरण 13.2.5
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 13.2.5.1
को से गुणा करें.
चरण 13.2.5.2
को से गुणा करें.