समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
पहला व्युत्पन्न पता करें.
चरण 1.1.1
भागफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.1.2
अवकलन करें.
चरण 1.1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.4
को से गुणा करें.
चरण 1.1.2.5
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.6
और जोड़ें.
चरण 1.1.3
को के घात तक बढ़ाएं.
चरण 1.1.4
को के घात तक बढ़ाएं.
चरण 1.1.5
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.1.6
और जोड़ें.
चरण 1.1.7
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.8
को से गुणा करें.
चरण 1.1.9
सरल करें.
चरण 1.1.9.1
वितरण गुणधर्म लागू करें.
चरण 1.1.9.2
न्यूमेरेटर को सरल करें.
चरण 1.1.9.2.1
प्रत्येक पद को सरल करें.
चरण 1.1.9.2.1.1
को से गुणा करें.
चरण 1.1.9.2.1.2
को से गुणा करें.
चरण 1.1.9.2.2
में से घटाएं.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
न्यूमेरेटर को शून्य के बराबर सेट करें.
चरण 2.3
के लिए समीकरण को हल करें.
चरण 2.3.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.3.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 2.3.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.3.2.2
बाईं ओर को सरल बनाएंं.
चरण 2.3.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.2.2.1.2
को से विभाजित करें.
चरण 2.3.2.3
दाईं ओर को सरल बनाएंं.
चरण 2.3.2.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.3.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 2.3.4
को सरल करें.
चरण 2.3.4.1
को के रूप में फिर से लिखें.
चरण 2.3.4.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 2.3.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 2.3.5.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 2.3.5.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 2.3.5.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3
चरण 3.1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 3.2
के लिए हल करें.
चरण 3.2.1
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.2.2
को सरल करें.
चरण 3.2.2.1
को के रूप में फिर से लिखें.
चरण 3.2.2.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 3.2.2.3
जोड़ या घटाव , है.
चरण 4
चरण 4.1
पर मान ज्ञात करें.
चरण 4.1.1
को से प्रतिस्थापित करें.
चरण 4.1.2
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
अपरिभाषित
अपरिभाषित
चरण 5
मूल समस्या के डोमेन में का कोई मान नहीं है जहां व्युत्पन्न या अपरिभाषित है.
कोई क्रांतिक बिंदु नहीं मिला