कैलकुलस उदाहरण

स्थानीय अधिकतम और न्यूनतम ज्ञात कीजिये। e^t-t
चरण 1
को एक फलन के रूप में लिखें.
चरण 2
फलन का पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.3
को से गुणा करें.
चरण 3
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 3.3
स्थिरांक नियम का उपयोग करके अंतर करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.2
और जोड़ें.
चरण 4
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 5
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 5.1.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 5.1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 5.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 5.1.3.3
को से गुणा करें.
चरण 5.2
का पहला व्युत्पन्न बटे , है.
चरण 6
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 6.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 6.3
घातांक से चर को हटाने के लिए समीकरण के दोनों पक्षों का प्राकृतिक लघुगणक लें.
चरण 6.4
दाएं पक्ष का विस्तार करें.
और स्टेप्स के लिए टैप करें…
चरण 6.4.1
को लघुगणक के बाहर ले जाकर का प्रसार करें.
चरण 6.4.2
का प्राकृतिक लघुगणक है.
चरण 6.4.3
को से गुणा करें.
चरण 6.5
का प्राकृतिक लघुगणक है.
चरण 7
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 7.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 8
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 9
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 10
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 11
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
चरण 12
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 12.1
व्यंजक में चर को से बदलें.
चरण 12.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 12.2.1
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 12.2.2
में से घटाएं.
चरण 12.2.3
अंतिम उत्तर है.
चरण 13
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय निम्नत्तम है
चरण 14