कैलकुलस उदाहरण

अवकलजों का उपयोग करके पता लगाए कहाँ बढ़ /घट रहा है 1+5/x-6/(x^2)
चरण 1
को एक फलन के रूप में लिखें.
चरण 2
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.1.1.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.2.2
को के रूप में फिर से लिखें.
चरण 2.1.2.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.2.4
को से गुणा करें.
चरण 2.1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.3.2
को के रूप में फिर से लिखें.
चरण 2.1.3.3
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.3.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.1.3.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.3.3.3
की सभी घटनाओं को से बदलें.
चरण 2.1.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.3.5
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.5.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.1.3.5.2
को से गुणा करें.
चरण 2.1.3.6
को से गुणा करें.
चरण 2.1.3.7
को के घात तक बढ़ाएं.
चरण 2.1.3.8
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.1.3.9
में से घटाएं.
चरण 2.1.3.10
को से गुणा करें.
चरण 2.1.4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.4.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 2.1.4.2
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 2.1.4.3
पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 2.1.4.3.1
और को मिलाएं.
चरण 2.1.4.3.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.1.4.3.3
में से घटाएं.
चरण 2.1.4.3.4
और को मिलाएं.
चरण 2.2
का पहला व्युत्पन्न बटे , है.
चरण 3
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 3.2
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 3.2.2
चूँकि में संख्याएँ और चर दोनों शामिल हैं, LCM को खोजने के लिए दो चरण हैं. संख्यात्मक भाग के लिए LCM खोजें फिर चर भाग के लिए LCM पता करें.
चरण 3.2.3
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 3.2.4
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 3.2.5
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 3.2.6
के गुणनखंड हैं, जो कि को एक दूसरे से बार गुणा करते हैं.
बार आता है.
चरण 3.2.7
के गुणनखंड हैं, जो कि को एक दूसरे से बार गुणा करते हैं.
बार आता है.
चरण 3.2.8
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 3.2.9
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.9.1
को से गुणा करें.
चरण 3.2.9.2
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.9.2.1
को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.9.2.1.1
को के घात तक बढ़ाएं.
चरण 3.2.9.2.1.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 3.2.9.2.2
और जोड़ें.
चरण 3.3
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
के प्रत्येक पद को से गुणा करें.
चरण 3.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 3.3.2.1.1.2
में से का गुणनखंड करें.
चरण 3.3.2.1.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.1.1.4
व्यंजक को फिर से लिखें.
चरण 3.3.2.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.1.2.2
व्यंजक को फिर से लिखें.
चरण 3.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.1
को से गुणा करें.
चरण 3.4
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.4.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.4.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.2.2.1.2
को से विभाजित करें.
चरण 3.4.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.3.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 4
वे मान जो व्युत्पन्न को के बराबर बनाते हैं, वे हैं.
चरण 5
पता लगाएं कि व्युत्पन्न कहां अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 5.1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 5.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 5.2.2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.2.1
को के रूप में फिर से लिखें.
चरण 5.2.2.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 5.2.2.3
जोड़ या घटाव , है.
चरण 5.3
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 5.4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.1
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 5.4.2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.2.1
को के रूप में फिर से लिखें.
चरण 5.4.2.2
वास्तविक संख्या मानकर, करणी के अंतर्गत से पदों को बाहर निकालें.
चरण 6
को मानों के आस-पास अलग-अलग अंतराल में विभाजित करें जो व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 7
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1.1
को के घात तक बढ़ाएं.
चरण 7.2.1.2
को से विभाजित करें.
चरण 7.2.1.3
को से गुणा करें.
चरण 7.2.1.4
को के घात तक बढ़ाएं.
चरण 7.2.1.5
को से विभाजित करें.
चरण 7.2.2
में से घटाएं.
चरण 7.2.3
अंतिम उत्तर है.
चरण 7.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 8
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
व्यंजक में चर को से बदलें.
चरण 8.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1.1
को के घात तक बढ़ाएं.
चरण 8.2.1.2
को से विभाजित करें.
चरण 8.2.1.3
को से गुणा करें.
चरण 8.2.1.4
को के घात तक बढ़ाएं.
चरण 8.2.1.5
को से विभाजित करें.
चरण 8.2.2
और जोड़ें.
चरण 8.2.3
अंतिम उत्तर है.
चरण 8.3
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 9
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
व्यंजक में चर को से बदलें.
चरण 9.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 9.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.2.1.1
को के घात तक बढ़ाएं.
चरण 9.2.1.2
को से विभाजित करें.
चरण 9.2.1.3
को से गुणा करें.
चरण 9.2.1.4
को के घात तक बढ़ाएं.
चरण 9.2.1.5
को से विभाजित करें.
चरण 9.2.2
और जोड़ें.
चरण 9.2.3
अंतिम उत्तर है.
चरण 9.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 10
उन अंतरालों की सूची बनाइए जिन पर फलन बढ़ रहा है और घट रहा है.
बढ़ रहा है:
इस पर घटता हुआ:
चरण 11