कैलकुलस उदाहरण

L'Hospital के नियम का प्रयोग करके मान निकालिये। x/(arctan(7x)) का लिमिट, जब x 0 की ओर एप्रोच करता हो
चरण 1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.3
भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
को से गुणा करें.
चरण 1.3.2
को से प्रतिस्थापित करें और चूँकि मान लें की ओर एप्रोच करता है .
चरण 1.3.3
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.3.1
को से गुणा करें.
चरण 1.3.3.2
का सटीक मान है.
चरण 1.3.3.3
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.3
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.3.2
के संबंध में का व्युत्पन्न है.
चरण 3.3.3
की सभी घटनाओं को से बदलें.
चरण 3.4
में से का गुणनखंड करें.
चरण 3.5
उत्पाद नियम को पर लागू करें.
चरण 3.6
को के घात तक बढ़ाएं.
चरण 3.7
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.8
और को मिलाएं.
चरण 3.9
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.10
को से गुणा करें.
चरण 3.11
पदों को पुन: व्यवस्थित करें
चरण 4
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 5
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
को से गुणा करें.
चरण 5.2
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 5.3
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 5.4
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 5.5
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 5.6
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 6
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 7
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 7.1.2
को से गुणा करें.
चरण 7.2
और जोड़ें.
चरण 7.3
को से गुणा करें.