कैलकुलस उदाहरण

अवकलजों का उपयोग करके पता लगाए कहाँ बढ़ /घट रहा है f(x)=-3x^2+54 x का प्राकृतिक लघुगणक
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.3
को से गुणा करें.
चरण 1.1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.2
के संबंध में का व्युत्पन्न है.
चरण 1.1.3.3
और को मिलाएं.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 2.2.2
एक और किसी भी व्यंजक का LCM (लघुत्तम समापवर्तक) व्यंजक है.
चरण 2.3
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
के प्रत्येक पद को से गुणा करें.
चरण 2.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.1
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.1.1
ले जाएं.
चरण 2.3.2.1.1.2
को से गुणा करें.
चरण 2.3.2.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.2.1.2.2
व्यंजक को फिर से लिखें.
चरण 2.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.1
को से गुणा करें.
चरण 2.4
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.4.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.4.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.4.2.2.1.2
को से विभाजित करें.
चरण 2.4.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.3.1
को से विभाजित करें.
चरण 2.4.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 2.4.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.4.1
को के रूप में फिर से लिखें.
चरण 2.4.4.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 2.4.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 2.4.5.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 2.4.5.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 2.4.5.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3
वे मान जो व्युत्पन्न को के बराबर बनाते हैं, वे हैं.
चरण 4
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 5
को मानों के आस-पास अलग-अलग अंतराल में विभाजित करें जो व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 6
उन अंतरालों को छोड़ दें जो डोमेन में नहीं हैं.
चरण 7
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 7.2.1.1.2
में से का गुणनखंड करें.
चरण 7.2.1.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 7.2.1.1.4
व्यंजक को फिर से लिखें.
चरण 7.2.1.2
को से गुणा करें.
चरण 7.2.1.3
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 7.2.1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1.4.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 7.2.1.4.2
में से का गुणनखंड करें.
चरण 7.2.1.4.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 7.2.1.4.4
व्यंजक को फिर से लिखें.
चरण 7.2.1.5
को से गुणा करें.
चरण 7.2.2
में से घटाएं.
चरण 7.2.3
अंतिम उत्तर है.
चरण 8
उन अंतरालों को छोड़ दें जो डोमेन में नहीं हैं.
चरण 9
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
व्यंजक में चर को से बदलें.
चरण 9.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 9.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.2.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 9.2.1.1.1
में से का गुणनखंड करें.
चरण 9.2.1.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.2.1.1.3
व्यंजक को फिर से लिखें.
चरण 9.2.1.2
को से गुणा करें.
चरण 9.2.1.3
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 9.2.1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 9.2.1.4.1
में से का गुणनखंड करें.
चरण 9.2.1.4.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.2.1.4.3
व्यंजक को फिर से लिखें.
चरण 9.2.1.5
को से गुणा करें.
चरण 9.2.2
और जोड़ें.
चरण 9.2.3
अंतिम उत्तर है.
चरण 9.3
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 10
उन अंतरालों को छोड़ दें जो डोमेन में नहीं हैं.
चरण 11
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 11.1
व्यंजक में चर को से बदलें.
चरण 11.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 11.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 11.2.1.1
को से गुणा करें.
चरण 11.2.1.2
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 11.2.1.2.1
में से का गुणनखंड करें.
चरण 11.2.1.2.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 11.2.1.2.2.1
में से का गुणनखंड करें.
चरण 11.2.1.2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 11.2.1.2.2.3
व्यंजक को फिर से लिखें.
चरण 11.2.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 11.2.3
और को मिलाएं.
चरण 11.2.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 11.2.5
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 11.2.5.1
को से गुणा करें.
चरण 11.2.5.2
और जोड़ें.
चरण 11.2.6
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 11.2.7
अंतिम उत्तर है.
चरण 11.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 12
उन अंतरालों की सूची बनाइए जिन पर फलन बढ़ रहा है और घट रहा है.
बढ़ रहा है:
इस पर घटता हुआ:
चरण 13