कैलकुलस उदाहरण

विशेष बिन्दु ज्ञात कीजिये -5(x^2-24x+80)^(4/5)
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.3
की सभी घटनाओं को से बदलें.
चरण 1.1.3
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.1.4
और को मिलाएं.
चरण 1.1.5
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.1.6
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.6.1
को से गुणा करें.
चरण 1.1.6.2
में से घटाएं.
चरण 1.1.7
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.1.8
और को मिलाएं.
चरण 1.1.9
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 1.1.10
और को मिलाएं.
चरण 1.1.11
को से गुणा करें.
चरण 1.1.12
में से का गुणनखंड करें.
चरण 1.1.13
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.13.1
में से का गुणनखंड करें.
चरण 1.1.13.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.1.13.3
व्यंजक को फिर से लिखें.
चरण 1.1.14
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.1.15
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.16
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.17
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.18
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.19
को से गुणा करें.
चरण 1.1.20
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.21
और जोड़ें.
चरण 1.1.22
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.22.1
के गुणनखंडों को फिर से क्रमित करें.
चरण 1.1.22.2
वितरण गुणधर्म लागू करें.
चरण 1.1.22.3
को से गुणा करें.
चरण 1.1.22.4
को से गुणा करें.
चरण 1.1.22.5
को से गुणा करें.
चरण 1.1.22.6
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.22.6.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.22.6.1.1
में से का गुणनखंड करें.
चरण 1.1.22.6.1.2
में से का गुणनखंड करें.
चरण 1.1.22.6.1.3
में से का गुणनखंड करें.
चरण 1.1.22.6.2
को से गुणा करें.
चरण 1.1.22.7
में से का गुणनखंड करें.
चरण 1.1.22.8
को के रूप में फिर से लिखें.
चरण 1.1.22.9
में से का गुणनखंड करें.
चरण 1.1.22.10
को के रूप में फिर से लिखें.
चरण 1.1.22.11
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
न्यूमेरेटर को शून्य के बराबर सेट करें.
चरण 2.3
के लिए समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.3.1.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.1.2.1.2
को से विभाजित करें.
चरण 2.3.1.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.3.1
को से विभाजित करें.
चरण 2.3.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 3.1
भिन्नात्मक घातांक वाले व्यंजकों को करणी में बदलें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
घातांक को मूलक के रूप में फिर से लिखने के लिए नियम लागू करें.
चरण 3.1.2
किसी भी चीज़ को तक बढ़ा दिया जाता है, वह आधार ही होता है.
चरण 3.2
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 3.3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
समीकरण के बाईं पक्ष के करणी को हटाने के लिए, समीकरण के दोनों पक्षों को के घात तक बढ़ाएँ.
चरण 3.3.2
समीकरण के प्रत्येक पक्ष को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 3.3.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.2.1.1
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.2.1.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.3.2.2.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.2.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.2.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 3.3.2.2.1.2
सरल करें.
चरण 3.3.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.3.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 3.3.3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.1
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.1.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 3.3.3.1.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 3.3.3.2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 3.3.3.3
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.3.1
को के बराबर सेट करें.
चरण 3.3.3.3.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.3.3.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.4.1
को के बराबर सेट करें.
चरण 3.3.3.4.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.3.3.5
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3.4
समीकरण अपरिभाषित है जहाँ भाजक के बराबर है, एक वर्गमूल का तर्क से कम है या एक लघुगणक का तर्क से कम या उसके बराबर है.
चरण 4
प्रत्येक मान पर का मूल्यांकन करें जहां व्युत्पन्न या अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
को से प्रतिस्थापित करें.
चरण 4.1.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1.1
को के घात तक बढ़ाएं.
चरण 4.1.2.1.2
को से गुणा करें.
चरण 4.1.2.2
जोड़कर और घटाकर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.2.1
में से घटाएं.
चरण 4.1.2.2.2
और जोड़ें.
चरण 4.2
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
को से प्रतिस्थापित करें.
चरण 4.2.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.1
को के घात तक बढ़ाएं.
चरण 4.2.2.1.2
को से गुणा करें.
चरण 4.2.2.2
सामान्य गुणनखंडों को रद्द करके व्यंजक को छोटा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.2.1
में से घटाएं.
चरण 4.2.2.2.2
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.2.2.1
और जोड़ें.
चरण 4.2.2.2.2.2
को के रूप में फिर से लिखें.
चरण 4.2.2.2.2.3
घात नियम लागू करें और घातांक गुणा करें, .
चरण 4.2.2.2.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.2.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.2.2.3.2
व्यंजक को फिर से लिखें.
चरण 4.2.2.2.4
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.2.4.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 4.2.2.2.4.2
को से गुणा करें.
चरण 4.3
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
को से प्रतिस्थापित करें.
चरण 4.3.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.1.1
को के घात तक बढ़ाएं.
चरण 4.3.2.1.2
को से गुणा करें.
चरण 4.3.2.2
सामान्य गुणनखंडों को रद्द करके व्यंजक को छोटा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.2.1
में से घटाएं.
चरण 4.3.2.2.2
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.2.2.1
और जोड़ें.
चरण 4.3.2.2.2.2
को के रूप में फिर से लिखें.
चरण 4.3.2.2.2.3
घात नियम लागू करें और घातांक गुणा करें, .
चरण 4.3.2.2.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.2.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.2.2.3.2
व्यंजक को फिर से लिखें.
चरण 4.3.2.2.4
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.2.4.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 4.3.2.2.4.2
को से गुणा करें.
चरण 4.4
सभी बिंदुओं को सूचीबद्ध करें.
चरण 5