समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
को एक फलन के रूप में लिखें.
चरण 2
चरण 2.1
पहला व्युत्पन्न पता करें.
चरण 2.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.1.2
का मान ज्ञात करें.
चरण 2.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.2.3
और को मिलाएं.
चरण 2.1.2.4
और को मिलाएं.
चरण 2.1.2.5
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.1.2.5.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.1.2.5.2
को से विभाजित करें.
चरण 2.1.3
का मान ज्ञात करें.
चरण 2.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.3.2
के संबंध में का व्युत्पन्न है.
चरण 2.2
दूसरा व्युत्पन्न पता करें.
चरण 2.2.1
अवकलन करें.
चरण 2.2.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.2
का मान ज्ञात करें.
चरण 2.2.2.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.2.2.2
को के रूप में फिर से लिखें.
चरण 2.2.2.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.2.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2.5
को से गुणा करें.
चरण 2.2.2.6
को से गुणा करें.
चरण 2.2.2.7
को से गुणा करें.
चरण 2.2.2.8
और जोड़ें.
चरण 2.2.3
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 2.2.4
पदों को पुन: व्यवस्थित करें
चरण 2.3
का दूसरा व्युत्पन्न बटे , है.
चरण 3
चरण 3.1
दूसरे व्युत्पन्न को के बराबर सेट करें.
चरण 3.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.3
समीकरण के पदों का LCD पता करें.
चरण 3.3.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 3.3.2
एक और किसी भी व्यंजक का LCM (लघुत्तम समापवर्तक) व्यंजक है.
चरण 3.4
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
चरण 3.4.1
के प्रत्येक पद को से गुणा करें.
चरण 3.4.2
बाईं ओर को सरल बनाएंं.
चरण 3.4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.2.1.2
व्यंजक को फिर से लिखें.
चरण 3.5
समीकरण को हल करें.
चरण 3.5.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.5.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 3.5.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.5.2.2
बाईं ओर को सरल बनाएंं.
चरण 3.5.2.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 3.5.2.2.2
को से विभाजित करें.
चरण 3.5.2.3
दाईं ओर को सरल बनाएंं.
चरण 3.5.2.3.1
को से विभाजित करें.
चरण 3.5.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.5.4
को के रूप में फिर से लिखें.
चरण 3.5.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.5.5.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.5.5.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.5.5.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 4
ऐसा कोई मान नहीं पता चला जो दूसरा व्युत्पन्न को के बराबर बना सके.
कोई विभक्ति बिंदु नहीं