समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
को के रूप में फिर से लिखें.
चरण 1.1.1
को के रूप में फिर से लिखें.
चरण 1.1.1.1
में से का गुणनखंड करें.
चरण 1.1.1.2
में से का गुणनखंड करें.
चरण 1.1.1.3
में से का गुणनखंड करें.
चरण 1.1.1.4
को के रूप में फिर से लिखें.
चरण 1.1.2
करणी से पदों को बाहर निकालें.
चरण 1.2
अचर उत्पाद नियम का उपयोग करके अवकलन करें.
चरण 1.2.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 1.2.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.3.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3
की सभी घटनाओं को से बदलें.
चरण 1.4
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.5
और को मिलाएं.
चरण 1.6
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.7
न्यूमेरेटर को सरल करें.
चरण 1.7.1
को से गुणा करें.
चरण 1.7.2
में से घटाएं.
चरण 1.8
पदों को सरल करें.
चरण 1.8.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.8.2
और को मिलाएं.
चरण 1.8.3
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 1.8.4
और को मिलाएं.
चरण 1.8.5
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.8.6
व्यंजक को फिर से लिखें.
चरण 1.9
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.10
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.11
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.12
व्यंजक को सरल बनाएंं.
चरण 1.12.1
और जोड़ें.
चरण 1.12.2
को से गुणा करें.
चरण 2
चरण 2.1
घातांक के बुनियादी नियम लागू करें.
चरण 2.1.1
को के रूप में फिर से लिखें.
चरण 2.1.2
घातांक को में गुणा करें.
चरण 2.1.2.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.1.2.2
और को मिलाएं.
चरण 2.1.2.3
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.3
की सभी घटनाओं को से बदलें.
चरण 2.3
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 2.4
और को मिलाएं.
चरण 2.5
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 2.6
न्यूमेरेटर को सरल करें.
चरण 2.6.1
को से गुणा करें.
चरण 2.6.2
में से घटाएं.
चरण 2.7
न्यूमेरेटरों को जोड़ें.
चरण 2.7.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.7.2
और को मिलाएं.
चरण 2.7.3
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 2.8
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.9
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.10
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.11
व्यंजक को सरल बनाएंं.
चरण 2.11.1
और जोड़ें.
चरण 2.11.2
को से गुणा करें.
चरण 3
चरण 3.1
अचर उत्पाद नियम का उपयोग करके अवकलन करें.
चरण 3.1.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.1.2
घातांक के बुनियादी नियम लागू करें.
चरण 3.1.2.1
को के रूप में फिर से लिखें.
चरण 3.1.2.2
घातांक को में गुणा करें.
चरण 3.1.2.2.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.1.2.2.2
गुणा करें.
चरण 3.1.2.2.2.1
और को मिलाएं.
चरण 3.1.2.2.2.2
को से गुणा करें.
चरण 3.1.2.2.3
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 3.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.2.3
की सभी घटनाओं को से बदलें.
चरण 3.3
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 3.4
और को मिलाएं.
चरण 3.5
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 3.6
न्यूमेरेटर को सरल करें.
चरण 3.6.1
को से गुणा करें.
चरण 3.6.2
में से घटाएं.
चरण 3.7
न्यूमेरेटरों को जोड़ें.
चरण 3.7.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3.7.2
और को मिलाएं.
चरण 3.7.3
व्यंजक को सरल बनाएंं.
चरण 3.7.3.1
को के बाईं ओर ले जाएं.
चरण 3.7.3.2
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 3.7.3.3
को से गुणा करें.
चरण 3.7.3.4
को से गुणा करें.
चरण 3.7.4
को से गुणा करें.
चरण 3.7.5
को से गुणा करें.
चरण 3.8
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.9
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.10
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.11
व्यंजक को सरल बनाएंं.
चरण 3.11.1
और जोड़ें.
चरण 3.11.2
को से गुणा करें.
चरण 4
चरण 4.1
अचर उत्पाद नियम का उपयोग करके अवकलन करें.
चरण 4.1.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.2
घातांक के बुनियादी नियम लागू करें.
चरण 4.1.2.1
को के रूप में फिर से लिखें.
चरण 4.1.2.2
घातांक को में गुणा करें.
चरण 4.1.2.2.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 4.1.2.2.2
गुणा करें.
चरण 4.1.2.2.2.1
और को मिलाएं.
चरण 4.1.2.2.2.2
को से गुणा करें.
चरण 4.1.2.2.3
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 4.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 4.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.2.3
की सभी घटनाओं को से बदलें.
चरण 4.3
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 4.4
और को मिलाएं.
चरण 4.5
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 4.6
न्यूमेरेटर को सरल करें.
चरण 4.6.1
को से गुणा करें.
चरण 4.6.2
में से घटाएं.
चरण 4.7
न्यूमेरेटरों को जोड़ें.
चरण 4.7.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4.7.2
और को मिलाएं.
चरण 4.7.3
व्यंजक को सरल बनाएंं.
चरण 4.7.3.1
को के बाईं ओर ले जाएं.
चरण 4.7.3.2
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 4.7.4
को से गुणा करें.
चरण 4.7.5
गुणा करें.
चरण 4.7.5.1
को से गुणा करें.
चरण 4.7.5.2
को से गुणा करें.
चरण 4.8
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.9
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.10
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.11
व्यंजक को सरल बनाएंं.
चरण 4.11.1
और जोड़ें.
चरण 4.11.2
को से गुणा करें.