कैलकुलस उदाहरण

स्थानीय अधिकतम और न्यूनतम ज्ञात कीजिये। f(x)=x(9-x^2)
चरण 1
फलन का पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.3
और जोड़ें.
चरण 1.2.4
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.5
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.6
को से गुणा करें.
चरण 1.3
को के घात तक बढ़ाएं.
चरण 1.4
को के घात तक बढ़ाएं.
चरण 1.5
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.6
और जोड़ें.
चरण 1.7
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.8
पदों को जोड़कर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.8.1
को से गुणा करें.
चरण 1.8.2
में से घटाएं.
चरण 2
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.3
को से गुणा करें.
चरण 2.3
स्थिरांक नियम का उपयोग करके अंतर करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.2
और जोड़ें.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 4.1.2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.1.2.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.2.3
और जोड़ें.
चरण 4.1.2.4
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.2.5
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.2.6
को से गुणा करें.
चरण 4.1.3
को के घात तक बढ़ाएं.
चरण 4.1.4
को के घात तक बढ़ाएं.
चरण 4.1.5
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 4.1.6
और जोड़ें.
चरण 4.1.7
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.8
पदों को जोड़कर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.8.1
को से गुणा करें.
चरण 4.1.8.2
में से घटाएं.
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 5.3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.2.1.2
को से विभाजित करें.
चरण 5.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.3.3.1
को से विभाजित करें.
चरण 5.4
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 5.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 5.5.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 5.5.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 5.5.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 6
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
एक स्थानीय अधिकतम है क्योंकि दूसरे व्युत्पन्न का मान ऋणात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय अधिकतम है.
चरण 10
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
व्यंजक में चर को से बदलें.
चरण 10.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 10.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.2.1.1
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 10.2.1.1.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 10.2.1.1.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 10.2.1.1.3
और को मिलाएं.
चरण 10.2.1.1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 10.2.1.1.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 10.2.1.1.4.2
व्यंजक को फिर से लिखें.
चरण 10.2.1.1.5
घातांक का मान ज्ञात करें.
चरण 10.2.1.2
को से गुणा करें.
चरण 10.2.2
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 10.2.2.1
में से घटाएं.
चरण 10.2.2.2
को के बाईं ओर ले जाएं.
चरण 10.2.3
अंतिम उत्तर है.
चरण 11
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 12
को से गुणा करें.
चरण 13
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
चरण 14
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 14.1
व्यंजक में चर को से बदलें.
चरण 14.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 14.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 14.2.1.1
उत्पाद नियम को पर लागू करें.
चरण 14.2.1.2
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 14.2.1.2.1
ले जाएं.
चरण 14.2.1.2.2
को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 14.2.1.2.2.1
को के घात तक बढ़ाएं.
चरण 14.2.1.2.2.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 14.2.1.2.3
और जोड़ें.
चरण 14.2.1.3
को के घात तक बढ़ाएं.
चरण 14.2.1.4
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 14.2.1.4.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 14.2.1.4.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 14.2.1.4.3
और को मिलाएं.
चरण 14.2.1.4.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 14.2.1.4.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 14.2.1.4.4.2
व्यंजक को फिर से लिखें.
चरण 14.2.1.4.5
घातांक का मान ज्ञात करें.
चरण 14.2.1.5
को से गुणा करें.
चरण 14.2.2
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 14.2.2.1
में से घटाएं.
चरण 14.2.2.2
को से गुणा करें.
चरण 14.2.3
अंतिम उत्तर है.
चरण 15
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय उच्चत्तम है
एक स्थानीय निम्नत्तम है
चरण 16