कैलकुलस उदाहरण

स्थानीय अधिकतम और न्यूनतम ज्ञात कीजिये। f(x)=sec(2x)
चरण 1
फलन का पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.2
के संबंध में का व्युत्पन्न है.
चरण 1.1.3
की सभी घटनाओं को से बदलें.
चरण 1.2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.1
को से गुणा करें.
चरण 1.2.3.2
को के बाईं ओर ले जाएं.
चरण 2
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.3
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.3.2
के संबंध में का व्युत्पन्न है.
चरण 2.3.3
की सभी घटनाओं को से बदलें.
चरण 2.4
को के घात तक बढ़ाएं.
चरण 2.5
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.6
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
और जोड़ें.
चरण 2.6.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.6.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.6.4
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.6.4.1
को से गुणा करें.
चरण 2.6.4.2
को के बाईं ओर ले जाएं.
चरण 2.7
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 2.7.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.7.2
के संबंध में का व्युत्पन्न है.
चरण 2.7.3
की सभी घटनाओं को से बदलें.
चरण 2.8
को के घात तक बढ़ाएं.
चरण 2.9
को के घात तक बढ़ाएं.
चरण 2.10
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.11
और जोड़ें.
चरण 2.12
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.13
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.14
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.14.1
को से गुणा करें.
चरण 2.14.2
को के बाईं ओर ले जाएं.
चरण 2.15
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.15.1
वितरण गुणधर्म लागू करें.
चरण 2.15.2
पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 2.15.2.1
को से गुणा करें.
चरण 2.15.2.2
को से गुणा करें.
चरण 2.15.3
पदों को पुन: व्यवस्थित करें
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
को के बराबर सेट करें.
चरण 5.2
कोटिज्या का परिसर और है. चूंकि इस श्रेणी में नहीं आता है, इसलिए कोई हल नहीं है.
कोई हल नहीं
कोई हल नहीं
चरण 6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
को के बराबर सेट करें.
चरण 6.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
स्पर्शरेखा के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम स्पर्शरेखा लें.
चरण 6.2.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.2.1
का सटीक मान है.
चरण 6.2.3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 6.2.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.2.3.2.1.2
को से विभाजित करें.
चरण 6.2.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.3.3.1
को से विभाजित करें.
चरण 6.2.4
पहले और तीसरे चतुर्थांश में स्पर्शरेखा फलन धनात्मक होता है. दूसरा हल पता करने के लिए, चौथे चतुर्थांश में हल पता करने के लिए से संदर्भ कोण जोड़ें.
चरण 6.2.5
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.5.1
और जोड़ें.
चरण 6.2.5.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.5.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 6.2.5.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.5.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.5.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.2.5.2.2.1.2
को से विभाजित करें.
चरण 6.2.6
समीकरण का हल .
चरण 7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1.1
को से गुणा करें.
चरण 9.1.2
का सटीक मान है.
चरण 9.1.3
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 9.1.4
को से गुणा करें.
चरण 9.1.5
को से गुणा करें.
चरण 9.1.6
का सटीक मान है.
चरण 9.1.7
को से गुणा करें.
चरण 9.1.8
को से गुणा करें.
चरण 9.1.9
का सटीक मान है.
चरण 9.1.10
एक का कोई भी घात एक होता है.
चरण 9.1.11
को से गुणा करें.
चरण 9.2
और जोड़ें.
चरण 10
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
चरण 11
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 11.1
व्यंजक में चर को से बदलें.
चरण 11.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 11.2.1
को से गुणा करें.
चरण 11.2.2
का सटीक मान है.
चरण 11.2.3
अंतिम उत्तर है.
चरण 12
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 13
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 13.1.1.2
व्यंजक को फिर से लिखें.
चरण 13.1.2
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक बनाएंं क्योंकि दूसरे चतुर्थांश में स्पर्शरेखा ऋणात्मक होती है.
चरण 13.1.3
का सटीक मान है.
चरण 13.1.4
को से गुणा करें.
चरण 13.1.5
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 13.1.6
को से गुणा करें.
चरण 13.1.7
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1.7.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 13.1.7.2
व्यंजक को फिर से लिखें.
चरण 13.1.8
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक कीजिए क्योंकि दूसरे चतुर्थांश में खण्ड ऋणात्मक है.
चरण 13.1.9
का सटीक मान है.
चरण 13.1.10
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1.10.1
को से गुणा करें.
चरण 13.1.10.2
को से गुणा करें.
चरण 13.1.11
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1.11.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 13.1.11.2
व्यंजक को फिर से लिखें.
चरण 13.1.12
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक कीजिए क्योंकि दूसरे चतुर्थांश में खण्ड ऋणात्मक है.
चरण 13.1.13
का सटीक मान है.
चरण 13.1.14
को से गुणा करें.
चरण 13.1.15
को के घात तक बढ़ाएं.
चरण 13.1.16
को से गुणा करें.
चरण 13.2
में से घटाएं.
चरण 14
एक स्थानीय अधिकतम है क्योंकि दूसरे व्युत्पन्न का मान ऋणात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय अधिकतम है.
चरण 15
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 15.1
व्यंजक में चर को से बदलें.
चरण 15.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 15.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 15.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 15.2.1.2
व्यंजक को फिर से लिखें.
चरण 15.2.2
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक कीजिए क्योंकि दूसरे चतुर्थांश में खण्ड ऋणात्मक है.
चरण 15.2.3
का सटीक मान है.
चरण 15.2.4
को से गुणा करें.
चरण 15.2.5
अंतिम उत्तर है.
चरण 16
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय निम्नत्तम है
एक स्थानीय उच्चत्तम है
चरण 17