कैलकुलस उदाहरण

स्थानीय अधिकतम और न्यूनतम ज्ञात कीजिये। v(t)=170sin(120pit)
चरण 1
फलन का पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.2.2
के संबंध में का व्युत्पन्न है.
चरण 1.2.3
की सभी घटनाओं को से बदलें.
चरण 1.3
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.2
को से गुणा करें.
चरण 1.3.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.4
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.3.4.1
को से गुणा करें.
चरण 1.3.4.2
के गुणनखंडों को फिर से क्रमित करें.
चरण 2
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.2.2
के संबंध में का व्युत्पन्न है.
चरण 2.2.3
की सभी घटनाओं को से बदलें.
चरण 2.3
अचर उत्पाद नियम का उपयोग करके अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
को से गुणा करें.
चरण 2.3.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.3
को से गुणा करें.
चरण 2.4
को के घात तक बढ़ाएं.
चरण 2.5
को के घात तक बढ़ाएं.
चरण 2.6
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.7
और जोड़ें.
चरण 2.8
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.9
को से गुणा करें.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.1.2
व्यंजक को फिर से लिखें.
चरण 4.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.2.2
को से विभाजित करें.
चरण 4.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1.1
में से का गुणनखंड करें.
चरण 4.3.1.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1.2.1
में से का गुणनखंड करें.
चरण 4.3.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.1.2.3
व्यंजक को फिर से लिखें.
चरण 4.3.2
को से विभाजित करें.
चरण 5
कोज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम कोज्या लें.
चरण 6
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.1
का सटीक मान है.
चरण 7
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
के प्रत्येक पद को से विभाजित करें.
चरण 7.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 7.2.1.2
व्यंजक को फिर से लिखें.
चरण 7.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 7.2.2.2
को से विभाजित करें.
चरण 7.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.3.1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 7.3.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 7.3.2.1
में से का गुणनखंड करें.
चरण 7.3.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 7.3.2.3
व्यंजक को फिर से लिखें.
चरण 7.3.3
को से गुणा करें.
चरण 7.3.4
को से गुणा करें.
चरण 8
पहले और चौथे चतुर्थांश में कोज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, चौथे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
चरण 9
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 9.1.2
और को मिलाएं.
चरण 9.1.3
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 9.1.4
को से गुणा करें.
चरण 9.1.5
में से घटाएं.
चरण 9.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 9.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 9.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 9.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.2.2.1.2
व्यंजक को फिर से लिखें.
चरण 9.2.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 9.2.2.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.2.2.2.2
को से विभाजित करें.
चरण 9.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 9.2.3.1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 9.2.3.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 9.2.3.2.1
में से का गुणनखंड करें.
चरण 9.2.3.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.2.3.2.3
व्यंजक को फिर से लिखें.
चरण 9.2.3.3
को से गुणा करें.
चरण 9.2.3.4
को से गुणा करें.
चरण 10
समीकरण का हल .
चरण 11
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 12
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 12.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 12.1.1
में से का गुणनखंड करें.
चरण 12.1.2
में से का गुणनखंड करें.
चरण 12.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 12.1.4
व्यंजक को फिर से लिखें.
चरण 12.2
और को मिलाएं.
चरण 12.3
का सटीक मान है.
चरण 12.4
को से गुणा करें.
चरण 13
एक स्थानीय अधिकतम है क्योंकि दूसरे व्युत्पन्न का मान ऋणात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय अधिकतम है.
चरण 14
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 14.1
व्यंजक में चर को से बदलें.
चरण 14.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 14.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 14.2.1.1
में से का गुणनखंड करें.
चरण 14.2.1.2
में से का गुणनखंड करें.
चरण 14.2.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 14.2.1.4
व्यंजक को फिर से लिखें.
चरण 14.2.2
और को मिलाएं.
चरण 14.2.3
का सटीक मान है.
चरण 14.2.4
को से गुणा करें.
चरण 14.2.5
अंतिम उत्तर है.
चरण 15
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 16
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 16.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 16.1.1
में से का गुणनखंड करें.
चरण 16.1.2
में से का गुणनखंड करें.
चरण 16.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 16.1.4
व्यंजक को फिर से लिखें.
चरण 16.2
और को मिलाएं.
चरण 16.3
और को मिलाएं.
चरण 16.4
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक बनाएंं क्योंकि चौथे चतुर्थांश में ज्या ऋणात्मक है.
चरण 16.5
का सटीक मान है.
चरण 16.6
को से गुणा करें.
चरण 16.7
को से गुणा करें.
चरण 17
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
चरण 18
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 18.1
व्यंजक में चर को से बदलें.
चरण 18.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 18.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 18.2.1.1
में से का गुणनखंड करें.
चरण 18.2.1.2
में से का गुणनखंड करें.
चरण 18.2.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 18.2.1.4
व्यंजक को फिर से लिखें.
चरण 18.2.2
और को मिलाएं.
चरण 18.2.3
और को मिलाएं.
चरण 18.2.4
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक बनाएंं क्योंकि चौथे चतुर्थांश में ज्या ऋणात्मक है.
चरण 18.2.5
का सटीक मान है.
चरण 18.2.6
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 18.2.6.1
को से गुणा करें.
चरण 18.2.6.2
को से गुणा करें.
चरण 18.2.7
अंतिम उत्तर है.
चरण 19
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय उच्चत्तम है
एक स्थानीय निम्नत्तम है
चरण 20