समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 1.2.3
की सभी घटनाओं को से बदलें.
चरण 1.3
अवकलन करें.
चरण 1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3
को से गुणा करें.
चरण 1.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.5
को से गुणा करें.
चरण 1.4
सरल करें.
चरण 1.4.1
पदों को पुन: व्यवस्थित करें
चरण 1.4.2
गुणनखंडों को में पुन: क्रमित करें.
चरण 2
चरण 2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2
का मान ज्ञात करें.
चरण 2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.2.3
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.2.3.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.2.3.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.2.3.3
की सभी घटनाओं को से बदलें.
चरण 2.2.4
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.5
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.6
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.7
को से गुणा करें.
चरण 2.2.8
को से गुणा करें.
चरण 2.3
का मान ज्ञात करें.
चरण 2.3.1
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.3.1.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.3.1.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.3.1.3
की सभी घटनाओं को से बदलें.
चरण 2.3.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.4
को से गुणा करें.
चरण 2.4
सरल करें.
चरण 2.4.1
वितरण गुणधर्म लागू करें.
चरण 2.4.2
पदों को मिलाएं.
चरण 2.4.2.1
को के घात तक बढ़ाएं.
चरण 2.4.2.2
को के घात तक बढ़ाएं.
चरण 2.4.2.3
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.4.2.4
और जोड़ें.
चरण 2.4.2.5
और जोड़ें.
चरण 2.4.2.5.1
और को पुन: क्रमित करें.
चरण 2.4.2.5.2
और जोड़ें.
चरण 2.4.3
पदों को पुन: व्यवस्थित करें
चरण 2.4.4
गुणनखंडों को में पुन: क्रमित करें.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
चरण 4.1
पहला व्युत्पन्न पता करें.
चरण 4.1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 4.1.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 4.1.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 4.1.2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 4.1.2.3
की सभी घटनाओं को से बदलें.
चरण 4.1.3
अवकलन करें.
चरण 4.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.3.3
को से गुणा करें.
चरण 4.1.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.3.5
को से गुणा करें.
चरण 4.1.4
सरल करें.
चरण 4.1.4.1
पदों को पुन: व्यवस्थित करें
चरण 4.1.4.2
गुणनखंडों को में पुन: क्रमित करें.
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
में से का गुणनखंड करें.
चरण 5.2.1
में से का गुणनखंड करें.
चरण 5.2.2
से गुणा करें.
चरण 5.2.3
में से का गुणनखंड करें.
चरण 5.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 5.4
को के बराबर सेट करें और के लिए हल करें.
चरण 5.4.1
को के बराबर सेट करें.
चरण 5.4.2
के लिए हल करें.
चरण 5.4.2.1
घातांक से चर को हटाने के लिए समीकरण के दोनों पक्षों का प्राकृतिक लघुगणक लें.
चरण 5.4.2.2
दाएं पक्ष का विस्तार करें.
चरण 5.4.2.2.1
को लघुगणक के बाहर ले जाकर का प्रसार करें.
चरण 5.4.2.2.2
का प्राकृतिक लघुगणक है.
चरण 5.4.2.2.3
को से गुणा करें.
चरण 5.4.2.3
दाईं ओर को सरल बनाएंं.
चरण 5.4.2.3.1
समीकरण को हल नहीं किया जा सकता क्योंकि यह अपरिभाषित है.
चरण 5.4.2.4
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 5.4.2.4.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.4.2.4.2
बाईं ओर को सरल बनाएंं.
चरण 5.4.2.4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.4.2.4.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.4.2.4.2.1.2
को से विभाजित करें.
चरण 5.5
को के बराबर सेट करें और के लिए हल करें.
चरण 5.5.1
को के बराबर सेट करें.
चरण 5.5.2
के लिए हल करें.
चरण 5.5.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 5.5.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 5.5.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.5.2.2.2
बाईं ओर को सरल बनाएंं.
चरण 5.5.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.5.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.5.2.2.2.1.2
को से विभाजित करें.
चरण 5.5.2.2.3
दाईं ओर को सरल बनाएंं.
चरण 5.5.2.2.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 5.6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 6
चरण 6.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
चरण 9.1
प्रत्येक पद को सरल करें.
चरण 9.1.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 9.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.1.2.1
में से का गुणनखंड करें.
चरण 9.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.1.2.3
व्यंजक को फिर से लिखें.
चरण 9.1.3
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 9.1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.1.4.1
में से का गुणनखंड करें.
चरण 9.1.4.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.1.4.3
व्यंजक को फिर से लिखें.
चरण 9.1.5
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 9.1.6
और को मिलाएं.
चरण 9.1.7
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 9.1.8
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.1.8.1
में से का गुणनखंड करें.
चरण 9.1.8.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.1.8.3
व्यंजक को फिर से लिखें.
चरण 9.1.9
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 9.1.10
गुणा करें.
चरण 9.1.10.1
और को मिलाएं.
चरण 9.1.10.2
और को मिलाएं.
चरण 9.1.11
को के बाईं ओर ले जाएं.
चरण 9.2
पदों को सरल करें.
चरण 9.2.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 9.2.2
और जोड़ें.
चरण 10
चरण 10.1
को मानों के लगभग अलग-अलग अंतराल में विभाजित करें जो पहले व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 10.2
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
चरण 10.2.1
व्यंजक में चर को से बदलें.
चरण 10.2.2
परिणाम को सरल बनाएंं.
चरण 10.2.2.1
प्रत्येक पद को सरल करें.
चरण 10.2.2.1.1
को से गुणा करें.
चरण 10.2.2.1.2
को से गुणा करें.
चरण 10.2.2.1.3
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 10.2.2.1.4
को से गुणा करें.
चरण 10.2.2.1.5
को से गुणा करें.
चरण 10.2.2.1.6
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 10.2.2.2
और जोड़ें.
चरण 10.2.2.3
अंतिम उत्तर है.
चरण 10.3
के लिए कोई स्थानीय अधिकतम या निम्नतम नहीं मिला.
कोई स्थानीय अधिकतम या निम्नतम नहीं है
कोई स्थानीय अधिकतम या निम्नतम नहीं है
चरण 11