समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2
का मान ज्ञात करें.
चरण 1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3
को से गुणा करें.
चरण 1.3
का मान ज्ञात करें.
चरण 1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3
को से गुणा करें.
चरण 1.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.5
का मान ज्ञात करें.
चरण 1.5.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.5.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.5.3
को से गुणा करें.
चरण 1.6
सरल करें.
चरण 1.6.1
और जोड़ें.
चरण 1.6.2
पदों को पुन: व्यवस्थित करें
चरण 2
चरण 2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2
का मान ज्ञात करें.
चरण 2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.3
को से गुणा करें.
चरण 2.3
का मान ज्ञात करें.
चरण 2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.3
को से गुणा करें.
चरण 2.4
स्थिरांक नियम का उपयोग करके अंतर करें.
चरण 2.4.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.4.2
और जोड़ें.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
चरण 4.1
पहला व्युत्पन्न पता करें.
चरण 4.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.1.2
का मान ज्ञात करें.
चरण 4.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.2.3
को से गुणा करें.
चरण 4.1.3
का मान ज्ञात करें.
चरण 4.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.3.3
को से गुणा करें.
चरण 4.1.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.5
का मान ज्ञात करें.
चरण 4.1.5.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.5.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.5.3
को से गुणा करें.
चरण 4.1.6
सरल करें.
चरण 4.1.6.1
और जोड़ें.
चरण 4.1.6.2
पदों को पुन: व्यवस्थित करें
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 5.3
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 5.4
सरल करें.
चरण 5.4.1
न्यूमेरेटर को सरल करें.
चरण 5.4.1.1
को के घात तक बढ़ाएं.
चरण 5.4.1.2
गुणा करें.
चरण 5.4.1.2.1
को से गुणा करें.
चरण 5.4.1.2.2
को से गुणा करें.
चरण 5.4.1.3
में से का गुणनखंड करें.
चरण 5.4.1.3.1
में से का गुणनखंड करें.
चरण 5.4.1.3.2
में से का गुणनखंड करें.
चरण 5.4.1.4
को के रूप में फिर से लिखें.
चरण 5.4.1.4.1
को के रूप में फिर से लिखें.
चरण 5.4.1.4.2
को के रूप में फिर से लिखें.
चरण 5.4.1.5
करणी से पदों को बाहर निकालें.
चरण 5.4.1.6
को के घात तक बढ़ाएं.
चरण 5.4.2
को से गुणा करें.
चरण 5.4.3
को सरल करें.
चरण 5.5
के भाग को हल करने के लिए व्यंजक को सरल करें.
चरण 5.5.1
न्यूमेरेटर को सरल करें.
चरण 5.5.1.1
को के घात तक बढ़ाएं.
चरण 5.5.1.2
गुणा करें.
चरण 5.5.1.2.1
को से गुणा करें.
चरण 5.5.1.2.2
को से गुणा करें.
चरण 5.5.1.3
में से का गुणनखंड करें.
चरण 5.5.1.3.1
में से का गुणनखंड करें.
चरण 5.5.1.3.2
में से का गुणनखंड करें.
चरण 5.5.1.4
को के रूप में फिर से लिखें.
चरण 5.5.1.4.1
को के रूप में फिर से लिखें.
चरण 5.5.1.4.2
को के रूप में फिर से लिखें.
चरण 5.5.1.5
करणी से पदों को बाहर निकालें.
चरण 5.5.1.6
को के घात तक बढ़ाएं.
चरण 5.5.2
को से गुणा करें.
चरण 5.5.3
को सरल करें.
चरण 5.5.4
को में बदलें.
चरण 5.6
के भाग को हल करने के लिए व्यंजक को सरल करें.
चरण 5.6.1
न्यूमेरेटर को सरल करें.
चरण 5.6.1.1
को के घात तक बढ़ाएं.
चरण 5.6.1.2
गुणा करें.
चरण 5.6.1.2.1
को से गुणा करें.
चरण 5.6.1.2.2
को से गुणा करें.
चरण 5.6.1.3
में से का गुणनखंड करें.
चरण 5.6.1.3.1
में से का गुणनखंड करें.
चरण 5.6.1.3.2
में से का गुणनखंड करें.
चरण 5.6.1.4
को के रूप में फिर से लिखें.
चरण 5.6.1.4.1
को के रूप में फिर से लिखें.
चरण 5.6.1.4.2
को के रूप में फिर से लिखें.
चरण 5.6.1.5
करणी से पदों को बाहर निकालें.
चरण 5.6.1.6
को के घात तक बढ़ाएं.
चरण 5.6.2
को से गुणा करें.
चरण 5.6.3
को सरल करें.
चरण 5.6.4
को में बदलें.
चरण 5.7
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 6
चरण 6.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
चरण 9.1
प्रत्येक पद को सरल करें.
चरण 9.1.1
वितरण गुणधर्म लागू करें.
चरण 9.1.2
को से गुणा करें.
चरण 9.2
में विपरीत पदों को मिलाएं.
चरण 9.2.1
और जोड़ें.
चरण 9.2.2
में से घटाएं.
चरण 10
चूँकि पहला व्युत्पन्न परीक्षण विफल रहा, इसलिए कोई स्थानीय एक्सट्रीमा नहीं है.
कोई स्थानीय उच्चत्तम मान नहीं
चरण 11