समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.3
अवकलन करें.
चरण 1.3.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.3
और जोड़ें.
चरण 1.3.4
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.4
के संबंध में का व्युत्पन्न है.
चरण 1.5
घात नियम का उपयोग करके अवकलन करें.
चरण 1.5.1
और को मिलाएं.
चरण 1.5.2
सामान्य गुणनखंडों को रद्द करके व्यंजक को छोटा करें.
चरण 1.5.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.5.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.5.2.1.2
व्यंजक को फिर से लिखें.
चरण 1.5.2.2
को से गुणा करें.
चरण 1.5.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.5.4
व्यंजक को सरल बनाएंं.
चरण 1.5.4.1
को से गुणा करें.
चरण 1.5.4.2
और जोड़ें.
चरण 1.6
सरल करें.
चरण 1.6.1
वितरण गुणधर्म लागू करें.
चरण 1.6.2
पदों को मिलाएं.
चरण 1.6.2.1
को से गुणा करें.
चरण 1.6.2.2
को से गुणा करें.
चरण 2
चरण 2.1
अवकलन करें.
चरण 2.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.1.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2
का मान ज्ञात करें.
चरण 2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
के संबंध में का व्युत्पन्न है.
चरण 2.2.3
और को मिलाएं.
चरण 2.2.4
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.3
में से घटाएं.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
चरण 4.1
पहला व्युत्पन्न पता करें.
चरण 4.1.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.2
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 4.1.3
अवकलन करें.
चरण 4.1.3.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.1.3.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.3.3
और जोड़ें.
चरण 4.1.3.4
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.4
के संबंध में का व्युत्पन्न है.
चरण 4.1.5
घात नियम का उपयोग करके अवकलन करें.
चरण 4.1.5.1
और को मिलाएं.
चरण 4.1.5.2
सामान्य गुणनखंडों को रद्द करके व्यंजक को छोटा करें.
चरण 4.1.5.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.1.5.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.1.5.2.1.2
व्यंजक को फिर से लिखें.
चरण 4.1.5.2.2
को से गुणा करें.
चरण 4.1.5.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.5.4
व्यंजक को सरल बनाएंं.
चरण 4.1.5.4.1
को से गुणा करें.
चरण 4.1.5.4.2
और जोड़ें.
चरण 4.1.6
सरल करें.
चरण 4.1.6.1
वितरण गुणधर्म लागू करें.
चरण 4.1.6.2
पदों को मिलाएं.
चरण 4.1.6.2.1
को से गुणा करें.
चरण 4.1.6.2.2
को से गुणा करें.
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 5.3
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 5.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.3.2
बाईं ओर को सरल बनाएंं.
चरण 5.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.2.1.2
को से विभाजित करें.
चरण 5.3.3
दाईं ओर को सरल बनाएंं.
चरण 5.3.3.1
को से विभाजित करें.
चरण 5.4
के लिए हल करने के लिए, लघुगणक के गुणों का उपयोग करके समीकरण को फिर से लिखें.
चरण 5.5
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 5.6
समीकरण को के रूप में फिर से लिखें.
चरण 6
चरण 6.1
यह पता लगाने के लिए कि व्यंजक कहाँ अपरिभाषित है, तर्क को से कम या उसके बराबर में सेट करें.
चरण 6.2
समीकरण अपरिभाषित है जहाँ भाजक के बराबर है, एक वर्गमूल का तर्क से कम है या एक लघुगणक का तर्क से कम या उसके बराबर है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
एक स्थानीय अधिकतम है क्योंकि दूसरे व्युत्पन्न का मान ऋणात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय अधिकतम है.
चरण 10
चरण 10.1
व्यंजक में चर को से बदलें.
चरण 10.2
परिणाम को सरल बनाएंं.
चरण 10.2.1
प्रत्येक पद को सरल करें.
चरण 10.2.1.1
का प्राकृतिक लघुगणक है.
चरण 10.2.1.2
को से गुणा करें.
चरण 10.2.2
व्यंजक को सरल बनाएंं.
चरण 10.2.2.1
में से घटाएं.
चरण 10.2.2.2
को से गुणा करें.
चरण 10.2.3
अंतिम उत्तर है.
चरण 11
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय उच्चत्तम है
चरण 12