समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2
का मान ज्ञात करें.
चरण 1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3
को से गुणा करें.
चरण 1.3
का मान ज्ञात करें.
चरण 1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 1.4
स्थिरांक नियम का उपयोग करके अंतर करें.
चरण 1.4.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.4.2
और जोड़ें.
चरण 2
चरण 2.1
अवकलन करें.
चरण 2.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.1.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2
का मान ज्ञात करें.
चरण 2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.3
में से घटाएं.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
चरण 4.1
पहला व्युत्पन्न पता करें.
चरण 4.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.1.2
का मान ज्ञात करें.
चरण 4.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.2.3
को से गुणा करें.
चरण 4.1.3
का मान ज्ञात करें.
चरण 4.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.3.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 4.1.4
स्थिरांक नियम का उपयोग करके अंतर करें.
चरण 4.1.4.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.4.2
और जोड़ें.
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 5.3
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 5.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.3.2
बाईं ओर को सरल बनाएंं.
चरण 5.3.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 5.3.2.2
को से विभाजित करें.
चरण 5.3.3
दाईं ओर को सरल बनाएंं.
चरण 5.3.3.1
को से विभाजित करें.
चरण 5.4
घातांक से चर को हटाने के लिए समीकरण के दोनों पक्षों का प्राकृतिक लघुगणक लें.
चरण 5.5
दाएं पक्ष का विस्तार करें.
चरण 5.5.1
को लघुगणक के बाहर ले जाकर का प्रसार करें.
चरण 5.5.2
का प्राकृतिक लघुगणक है.
चरण 5.5.3
को से गुणा करें.
चरण 6
चरण 6.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
चरण 9.1
चरघातांक और लघुगणक व्युत्क्रम फलन होते हैं
चरण 9.2
को से गुणा करें.
चरण 10
एक स्थानीय अधिकतम है क्योंकि दूसरे व्युत्पन्न का मान ऋणात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय अधिकतम है.
चरण 11
चरण 11.1
व्यंजक में चर को से बदलें.
चरण 11.2
परिणाम को सरल बनाएंं.
चरण 11.2.1
प्रत्येक पद को सरल करें.
चरण 11.2.1.1
को लघुगणक के अंदर ले जाकर को सरल करें.
चरण 11.2.1.2
को के घात तक बढ़ाएं.
चरण 11.2.1.3
चरघातांक और लघुगणक व्युत्क्रम फलन होते हैं
चरण 11.2.1.4
को से गुणा करें.
चरण 11.2.2
और जोड़ें.
चरण 11.2.3
अंतिम उत्तर है.
चरण 12
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय उच्चत्तम है
चरण 13