कैलकुलस उदाहरण

विशेष बिन्दु ज्ञात कीजिये x(x-4)^3
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.1.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.3
की सभी घटनाओं को से बदलें.
चरण 1.1.3
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.4
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.4.1
और जोड़ें.
चरण 1.1.3.4.2
को से गुणा करें.
चरण 1.1.3.5
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.6
को से गुणा करें.
चरण 1.1.4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.1.1
में से का गुणनखंड करें.
चरण 1.1.4.1.2
में से का गुणनखंड करें.
चरण 1.1.4.1.3
में से का गुणनखंड करें.
चरण 1.1.4.2
पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.2.1
को के बाईं ओर ले जाएं.
चरण 1.1.4.2.2
और जोड़ें.
चरण 1.1.4.3
को के रूप में फिर से लिखें.
चरण 1.1.4.4
FOIL विधि का उपयोग करके का प्रसार करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.4.1
वितरण गुणधर्म लागू करें.
चरण 1.1.4.4.2
वितरण गुणधर्म लागू करें.
चरण 1.1.4.4.3
वितरण गुणधर्म लागू करें.
चरण 1.1.4.5
समान पदों को सरल और संयोजित करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.5.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.5.1.1
को से गुणा करें.
चरण 1.1.4.5.1.2
को के बाईं ओर ले जाएं.
चरण 1.1.4.5.1.3
को से गुणा करें.
चरण 1.1.4.5.2
में से घटाएं.
चरण 1.1.4.6
प्रथम व्यंजक के प्रत्येक पद को द्वितीय व्यंजक के प्रत्येक पद से गुणा करके का प्रसार करें.
चरण 1.1.4.7
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.7.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 1.1.4.7.2
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.7.2.1
ले जाएं.
चरण 1.1.4.7.2.2
को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.7.2.2.1
को के घात तक बढ़ाएं.
चरण 1.1.4.7.2.2.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.1.4.7.2.3
और जोड़ें.
चरण 1.1.4.7.3
को के बाईं ओर ले जाएं.
चरण 1.1.4.7.4
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 1.1.4.7.5
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.7.5.1
ले जाएं.
चरण 1.1.4.7.5.2
को से गुणा करें.
चरण 1.1.4.7.6
को से गुणा करें.
चरण 1.1.4.7.7
को से गुणा करें.
चरण 1.1.4.7.8
को से गुणा करें.
चरण 1.1.4.7.9
को से गुणा करें.
चरण 1.1.4.8
में से घटाएं.
चरण 1.1.4.9
और जोड़ें.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
में से का गुणनखंड करें.
चरण 2.2.1.2
में से का गुणनखंड करें.
चरण 2.2.1.3
में से का गुणनखंड करें.
चरण 2.2.1.4
में से का गुणनखंड करें.
चरण 2.2.1.5
में से का गुणनखंड करें.
चरण 2.2.1.6
में से का गुणनखंड करें.
चरण 2.2.1.7
में से का गुणनखंड करें.
चरण 2.2.2
परिमेय मूल परीक्षण का उपयोग करते हुए गुणनखंड है.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
यदि एक बहुपद फलन में पूर्णांक गुणांक होते हैं, तो प्रत्येक परिमेय शून्य का रूप होगा, जहां स्थिरांक का एक गुणनखंड है और प्रमुख गुणांक का एक गुणनखंड है.
चरण 2.2.2.2
का प्रत्येक संयोजन पता करें. ये बहुपद फलन के संभावित मूल हैं.
चरण 2.2.2.3
को प्रतिस्थापित करें और व्यंजक को सरल करें. इस स्थिति में, व्यंजक के बराबर है, इसलिए बहुपद का मूल है.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.3.1
को बहुपद में प्रतिस्थापित करें.
चरण 2.2.2.3.2
को के घात तक बढ़ाएं.
चरण 2.2.2.3.3
को के घात तक बढ़ाएं.
चरण 2.2.2.3.4
को से गुणा करें.
चरण 2.2.2.3.5
में से घटाएं.
चरण 2.2.2.3.6
को से गुणा करें.
चरण 2.2.2.3.7
और जोड़ें.
चरण 2.2.2.3.8
में से घटाएं.
चरण 2.2.2.4
चूँकि एक ज्ञात मूल है, बहुपद को से भाग देकर भागफल बहुपद ज्ञात करें. इस बहुपद का उपयोग तब शेष मूलों को ज्ञात करने के लिए किया जा सकता है.
चरण 2.2.2.5
को से विभाजित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.5.1
बहुपदों को विभाजित करने के लिए सेट करें. यदि प्रत्येक घातांक के लिए कोई पद नहीं है, तो के मान वाला एक शब्द डालें.
--+-
चरण 2.2.2.5.2
भाज्य के उच्च क्रम के पद को विभाजक के उच्च क्रम वाले पद से विभाजित करें.
--+-
चरण 2.2.2.5.3
भाजक से नए भागफल पद को गुणा करें.
--+-
+-
चरण 2.2.2.5.4
व्यंजक को भाज्य से घटाने की आवश्यकता है, इसलिए में सभी चिह्नों को प्रतिस्थापित करें
--+-
-+
चरण 2.2.2.5.5
संकेतों को बदलने के बाद, नया लाभांश खोजने के लिए गुणा बहुपद से अंतिम लाभांश जोड़ें.
--+-
-+
-
चरण 2.2.2.5.6
अगली पदों को मूल लाभांश से नीचे वर्तमान लाभांश में खींचें.
--+-
-+
-+
चरण 2.2.2.5.7
भाज्य के उच्च क्रम के पद को विभाजक के उच्च क्रम वाले पद से विभाजित करें.
-
--+-
-+
-+
चरण 2.2.2.5.8
भाजक से नए भागफल पद को गुणा करें.
-
--+-
-+
-+
-+
चरण 2.2.2.5.9
व्यंजक को भाज्य से घटाने की आवश्यकता है, इसलिए में सभी चिह्नों को प्रतिस्थापित करें
-
--+-
-+
-+
+-
चरण 2.2.2.5.10
संकेतों को बदलने के बाद, नया लाभांश खोजने के लिए गुणा बहुपद से अंतिम लाभांश जोड़ें.
-
--+-
-+
-+
+-
+
चरण 2.2.2.5.11
अगली पदों को मूल लाभांश से नीचे वर्तमान लाभांश में खींचें.
-
--+-
-+
-+
+-
+-
चरण 2.2.2.5.12
भाज्य के उच्च क्रम के पद को विभाजक के उच्च क्रम वाले पद से विभाजित करें.
-+
--+-
-+
-+
+-
+-
चरण 2.2.2.5.13
भाजक से नए भागफल पद को गुणा करें.
-+
--+-
-+
-+
+-
+-
+-
चरण 2.2.2.5.14
व्यंजक को भाज्य से घटाने की आवश्यकता है, इसलिए में सभी चिह्नों को प्रतिस्थापित करें
-+
--+-
-+
-+
+-
+-
-+
चरण 2.2.2.5.15
संकेतों को बदलने के बाद, नया लाभांश खोजने के लिए गुणा बहुपद से अंतिम लाभांश जोड़ें.
-+
--+-
-+
-+
+-
+-
-+
चरण 2.2.2.5.16
चूंकि रिमांडर है, इसलिए अंतिम उत्तर भागफल है.
चरण 2.2.2.6
गुणनखंडों के एक सेट के रूप में लिखें.
चरण 2.2.3
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
पूर्ण वर्ग नियम का उपयोग करके गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1.1
को के रूप में फिर से लिखें.
चरण 2.2.3.1.2
जाँच करें कि मध्य पद पहले पद और तीसरे पद में वर्गीकृत की जा रही संख्याओं के गुणनफल का दोगुना है.
चरण 2.2.3.1.3
बहुपद को फिर से लिखें.
चरण 2.2.3.1.4
पूर्ण वर्ग त्रिपद नियम का उपयोग करके गुणनखंड करें, जहाँ और है.
चरण 2.2.3.2
अनावश्यक कोष्ठक हटा दें.
चरण 2.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
को के बराबर सेट करें.
चरण 2.4.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
को के बराबर सेट करें.
चरण 2.5.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.1
को के बराबर सेट करें.
चरण 2.5.2.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 3.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 4
प्रत्येक मान पर का मूल्यांकन करें जहां व्युत्पन्न या अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
को से प्रतिस्थापित करें.
चरण 4.1.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
को से गुणा करें.
चरण 4.1.2.2
में से घटाएं.
चरण 4.1.2.3
को के घात तक बढ़ाएं.
चरण 4.2
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
को से प्रतिस्थापित करें.
चरण 4.2.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
में से घटाएं.
चरण 4.2.2.2
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 4.2.2.3
को से गुणा करें.
चरण 4.3
सभी बिंदुओं को सूचीबद्ध करें.
चरण 5