कैलकुलस उदाहरण

सीमा का मूल्यांकन करें ( (e^(x+h)-e)^x)/h का लिमिट जब h 0 की ओर एप्रोच कर रहा हो = (e^(x+h)-e^x)/h का लिमिट जब h 0 की ओर एप्रोच कर रहा हो
चरण 1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 1.2
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.3
सीमा को घातांक में ले जाएँ.
चरण 1.4
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.5
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.6
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 2
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 2.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.1.2.1.2
सीमा को घातांक में ले जाएँ.
चरण 2.1.2.1.3
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.1.2.1.4
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 2.1.2.1.5
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 2.1.2.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 2.1.2.3
में विपरीत पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.3.1
और जोड़ें.
चरण 2.1.2.3.2
में से घटाएं.
चरण 2.1.3
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 2.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 2.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 2.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.1
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.1.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.3.3.1.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.3.3.1.3
की सभी घटनाओं को से बदलें.
चरण 2.3.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.3.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.3.5
और जोड़ें.
चरण 2.3.3.6
को से गुणा करें.
चरण 2.3.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.5
और जोड़ें.
चरण 2.3.6
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.4
को से विभाजित करें.
चरण 3
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
सीमा को घातांक में ले जाएँ.
चरण 3.2
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.3
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 4
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 4.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 5
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
और जोड़ें.
चरण 5.2
और जोड़ें.