कैलकुलस उदाहरण

सीमा का मूल्यांकन करें x+1) के प्राकृतिक लघुगणक x)/( के वर्गमूल का लिमिट जब x ( के दाईं ओर से 0 की ओर एप्रोच कर रहा हो
चरण 1
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
रेडिकल साइन के तहत सीमा को स्थानांतरित करें.
चरण 1.1.2.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.2.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.3.1
को के रूप में फिर से लिखें.
चरण 1.1.2.3.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 1.1.3
भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1.1
लघुगणक के अंदर की सीमा को स्थानांतरित करें.
चरण 1.1.3.1.2
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.3.1.3
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.3.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.3.1
और जोड़ें.
चरण 1.1.3.3.2
का प्राकृतिक लघुगणक है.
चरण 1.1.3.3.3
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 1.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 1.3.2
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 1.3.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.4
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.3.5
और को मिलाएं.
चरण 1.3.6
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.3.7
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.7.1
को से गुणा करें.
चरण 1.3.7.2
में से घटाएं.
चरण 1.3.8
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.3.9
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.9.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 1.3.9.2
को से गुणा करें.
चरण 1.3.10
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.3.10.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.3.10.2
के संबंध में का व्युत्पन्न है.
चरण 1.3.10.3
की सभी घटनाओं को से बदलें.
चरण 1.3.11
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.12
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.13
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.14
और जोड़ें.
चरण 1.3.15
को से गुणा करें.
चरण 1.4
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 1.5
को के रूप में फिर से लिखें.
चरण 1.6
को से गुणा करें.
चरण 2
चूंकि न्यूमेरेटर धनात्मक है और भाजक शून्य के करीब पहुंचता है और के लिए के पास दाईं ओर शून्य से अधिक है, फलन बिना सीमा के बढ़ता है.