कैलकुलस उदाहरण

सीमा का मूल्यांकन करें 4)-1/2)/(x-4) के वर्गमूल (1/( का लिमिट जब x 4 की ओर एप्रोच कर रहा हो
चरण 1
पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 1.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.3
प्रत्येक व्यंजक को के सामान्य भाजक के साथ लिखें, प्रत्येक को के उपयुक्त गुणनखंड से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
को से गुणा करें.
चरण 1.3.2
को से गुणा करें.
चरण 1.3.3
के गुणनखंडों को फिर से क्रमित करें.
चरण 1.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 2
सीमा तर्क को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 2.2
को से गुणा करें.
चरण 3
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 3.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 3.1.2.2
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.2.1.1
को के रूप में फिर से लिखें.
चरण 3.1.2.2.1.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 3.1.2.2.1.3
को से गुणा करें.
चरण 3.1.2.2.2
में से घटाएं.
चरण 3.1.3
भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.3.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.3.1.1
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 3.1.3.1.2
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.1.3.1.3
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 3.1.3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 3.1.3.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.3.3.1
को के रूप में फिर से लिखें.
चरण 3.1.3.3.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 3.1.3.3.3
को से गुणा करें.
चरण 3.1.3.3.4
को से गुणा करें.
चरण 3.1.3.3.5
में से घटाएं.
चरण 3.1.3.3.6
को से गुणा करें.
चरण 3.1.3.3.7
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 3.1.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 3.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 3.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 3.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 3.3.2
को के रूप में फिर से लिखें.
चरण 3.3.3
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 3.3.4
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.3.5
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.6
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.6.1
को से गुणा करें.
चरण 3.3.6.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.7
और जोड़ें.
चरण 3.3.8
को के रूप में फिर से लिखें.
चरण 3.3.9
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 3.3.10
को से गुणा करें.
चरण 3.3.11
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.12
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.3.13
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.3.14
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.15
और जोड़ें.
चरण 3.3.16
को से गुणा करें.
चरण 3.4
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
में से का गुणनखंड करें.
चरण 3.4.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1
में से का गुणनखंड करें.
चरण 3.4.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.2.3
व्यंजक को फिर से लिखें.
चरण 3.4.2.4
को से विभाजित करें.
चरण 4
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.