कैलकुलस उदाहरण

2nd次導関数を求める 2cos(x)+sin(x)^2
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
के संबंध में का व्युत्पन्न है.
चरण 1.2.3
को से गुणा करें.
चरण 1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.3.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.1.3
की सभी घटनाओं को से बदलें.
चरण 1.3.2
के संबंध में का व्युत्पन्न है.
चरण 1.4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1
पदों को पुन: व्यवस्थित करें
चरण 1.4.2
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.1
और को पुन: क्रमित करें.
चरण 1.4.2.2
और को पुन: क्रमित करें.
चरण 1.4.2.3
ज्या दोहरा कोण सर्वसमिका लागू करें.
चरण 2
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.2.1.2
के संबंध में का व्युत्पन्न है.
चरण 2.2.1.3
की सभी घटनाओं को से बदलें.
चरण 2.2.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.4
को से गुणा करें.
चरण 2.2.5
को के बाईं ओर ले जाएं.
चरण 2.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.2
के संबंध में का व्युत्पन्न है.
चरण 3
व्युत्पन्न ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.2.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.2.2.2
के संबंध में का व्युत्पन्न है.
चरण 3.2.2.3
की सभी घटनाओं को से बदलें.
चरण 3.2.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.2.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.2.5
को से गुणा करें.
चरण 3.2.6
को से गुणा करें.
चरण 3.2.7
को से गुणा करें.
चरण 3.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.2
के संबंध में का व्युत्पन्न है.
चरण 3.3.3
को से गुणा करें.
चरण 4
चौथा व्युत्पन्न ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.2.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 4.2.2.2
के संबंध में का व्युत्पन्न है.
चरण 4.2.2.3
की सभी घटनाओं को से बदलें.
चरण 4.2.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.2.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.2.5
को से गुणा करें.
चरण 4.2.6
को के बाईं ओर ले जाएं.
चरण 4.2.7
को से गुणा करें.
चरण 4.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.3.2
के संबंध में का व्युत्पन्न है.