समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
चरण 1.2.1
जैसे ही की ओर आ रहा है, उत्पाद सीमा नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.2.2
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 1.2.3
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 1.2.4
सीमा को त्रिकोणमितीय फलन के अंदर ले जाएँ क्योंकि कोटिज्या सतत है.
चरण 1.2.5
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 1.2.6
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
चरण 1.2.6.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.2.6.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.2.7
उत्तर को सरल करें.
चरण 1.2.7.1
को से गुणा करें.
चरण 1.2.7.2
का सटीक मान है.
चरण 1.2.7.3
को से गुणा करें.
चरण 1.2.7.4
का सटीक मान है.
चरण 1.2.7.5
को से गुणा करें.
चरण 1.3
भाजक की सीमा का मान ज्ञात करें.
चरण 1.3.1
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 1.3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.3.3
को से गुणा करें.
चरण 1.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 3
चरण 3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 3.2
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 3.3
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 3.3.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.3.2
के संबंध में का व्युत्पन्न है.
चरण 3.3.3
की सभी घटनाओं को से बदलें.
चरण 3.4
कोष्ठक हटा दें.
चरण 3.5
कोष्ठक हटा दें.
चरण 3.6
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.7
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.8
को से गुणा करें.
चरण 3.9
को के बाईं ओर ले जाएं.
चरण 3.10
कोष्ठक हटा दें.
चरण 3.11
कोष्ठक हटा दें.
चरण 3.12
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 3.12.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.12.2
के संबंध में का व्युत्पन्न है.
चरण 3.12.3
की सभी घटनाओं को से बदलें.
चरण 3.13
कोष्ठक हटा दें.
चरण 3.14
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.15
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.16
को से गुणा करें.
चरण 3.17
को के बाईं ओर ले जाएं.
चरण 3.18
कोष्ठक हटा दें.
चरण 3.19
पदों को पुन: व्यवस्थित करें
चरण 3.20
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.21
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.22
को से गुणा करें.
चरण 4
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 5
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 6
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 7
जैसे ही की ओर आ रहा है, उत्पाद सीमा नियम का उपयोग करके सीमा को विभाजित करें.
चरण 8
सीमा को त्रिकोणमितीय फलन के अंदर ले जाएँ क्योंकि कोटिज्या सतत है.
चरण 9
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 10
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 11
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 12
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि स्पर्शरेखा सतत है.
चरण 13
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 14
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 15
जैसे ही की ओर आ रहा है, उत्पाद सीमा नियम का उपयोग करके सीमा को विभाजित करें.
चरण 16
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 17
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 18
सीमा को त्रिकोणमितीय फलन के अंदर ले जाएँ क्योंकि कोटिज्या सतत है.
चरण 19
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 20
चरण 20.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 20.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 20.3
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 20.4
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 20.5
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 21
चरण 21.1
प्रत्येक पद को सरल करें.
चरण 21.1.1
को से गुणा करें.
चरण 21.1.2
का सटीक मान है.
चरण 21.1.3
को से गुणा करें.
चरण 21.1.4
को से गुणा करें.
चरण 21.1.5
का सटीक मान है.
चरण 21.1.6
को से गुणा करें.
चरण 21.1.7
को से गुणा करें.
चरण 21.1.8
का सटीक मान है.
चरण 21.1.9
को से गुणा करें.
चरण 21.1.10
ज्या और कोज्या के संदर्भ में फिर से लिखें, फिर सामान्य गुणनखंडों को रद्द करें.
चरण 21.1.10.1
कोष्ठक लगाएं.
चरण 21.1.10.2
और को पुन: क्रमित करें.
चरण 21.1.10.3
में से का गुणनखंड करें.
चरण 21.1.10.4
को से गुणा करें.
चरण 21.1.10.5
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 21.1.10.6
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 21.1.11
को से गुणा करें.
चरण 21.2
और जोड़ें.
चरण 21.3
और को मिलाएं.